Nav: Home

Researchers take important step toward gonorrhea vaccine

February 05, 2018

CORVALLIS, Ore. - Researchers are paving the way toward a new therapeutic approach for gonorrhea by shedding light on the mechanism behind important proteins on the Neisseria gonorrhoeae bacteria's outer membrane.

Future therapies could come in the form of new antibiotics or, even better, a vaccine.

The findings are especially important as Neisseria gonorrhoeae is considered a "superbug" because of its resistance to all classes of antibiotics available for treating infections.

Gonorrhea, a sexually transmitted disease whose numbers grow by 78 million new cases worldwide each year, is highly damaging to reproductive and neonatal health if untreated or improperly treated.

It can lead to endometritis, pelvic inflammatory disease, ectopic pregnancy, epididymitis and infertility. Babies born to infected mothers are at increased risk of blindness.

Research led by co-corresponding authors Aleksandra Sikora of Oregon State University and Nicholas Noinaj of Purdue University provides key structural and functional insights into a multicomponent protein complex known as BAM, short for beta-barrel assembly machinery.

In Gram-negative bacteria, BAM is responsible for the biogenesis of beta-barrel proteins on the cells' outer membranes.

Outer membrane proteins have crucial physiological and structural functions, among them nutrient acquisition, secretion, signal transduction, outer membrane biogenesis, and motility. In pathogenic bacteria, those proteins also lead to host colonization and can exploit immune responses, facilitating virulence.

BamA is the beta-barrel assembly machinery's primary component, and this study took a look at two other components, BamD and BamE.

Researchers found that in N. gonorrhoeae, BamE is exposed on the cell surface but is not essential for cell viability. Conversely, BamD had the opposite traits: Not surface displayed, yet essential for viability.

However, when BamE was knocked out in experiments, BamD moved to the surface.

"The loss of BamE altered cell envelope composition and led to slower cell growth," said Sikora, associate professor in the OSU College of Pharmacy. "It also led to an increase in both antibiotic susceptibility and the formation of membrane vesicles containing greater amounts of vaccine antigens."

Sikora noted that both BamD and BamE are expressed in diverse gonococcal isolates and throughout different phases of growth.

"The solved structures of Neisseria BamD and BamE share overall folds with E. coli proteins but there are also differences that may be important for function," she said. "So even though BAM is conserved across Gram-negative bacteria, there are structural and functional differences from species to species that can likely be exploited in developing species-specific therapeutics to combat multidrug resistance."

For example, in E. coli, BamE is not surface exposed; also, the absence of BamE in E. coli does not lead BamD to become displayed on the outer membrane.

"That's further evidence that BamE may be a new vaccine target against N. gonorrhoeae," Sikora said. "We did a lot of biology as well as structure solving that give us tools for enabling new therapies. In the battle against multidrug resistance, the ideal way of preventing disease is a vaccine, and having a structure of BamE opens the door to a structural vaccinology approach."
-end-
Findings were published in the Journal of Biological Chemistry. The National Institutes of Health funded this research.

Collaborators also included Ryszard Zielke of the OSU College of Pharmacy, Konstantin Korotkov of the University of Kentucky, and Susan Buchanan of the National Institute of Diabetes and Digestive and Kidney Diseases.

Oregon State University

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".