Nav: Home

Observing hydrogen's effects in metal

February 05, 2019

Hydrogen, the second-tiniest of all atoms, can penetrate right into the crystal structure of a solid metal.

That's good news for efforts to store hydrogen fuel safely within the metal itself, but it's bad news for structures such as the pressure vessels in nuclear plants, where hydrogen uptake eventually makes the vessel's metal walls more brittle, which can lead to failure. But this embrittlement process is difficult to observe because hydrogen atoms diffuse very fast, even inside the solid metal.

Now, researchers at MIT have figured out a way around that problem, creating a new technique that allows the observation of a metal surface during hydrogen penetration. Their findings are described in a paper appearing today in the International Journal of Hydrogen Energy, by MIT postdoc Jinwoo Kim and Thomas B. King Assistant Professor of Metallurgy C. Cem Tasan.

Hydrogen fuel is considered a potentially major tool for limiting global climate change because it is a high-energy fuel that could eventually be used in cars and planes. However, expensive and heavy high-pressure tanks are needed to contain it. Storing the fuel in the crystal lattice of the metal itself could be cheaper, lighter, and safer -- but first the process of how hydrogen enters and leaves the metal must be better understood.

"Hydrogen can diffuse at relatively high rates in the metal, because it's so small," Tasan says. "If you take a metal and put it in a hydrogen-rich environment, it will uptake the hydrogen, and this causes hydrogen embrittlement," he says. That's because the hydrogen atoms tend to segregate in certain parts of the metal crystal lattice, weakening its chemical bonds.

The new way of observing the embrittlement process as it happens may help to reveal how the embrittlement gets triggered, and it may suggest ways of slowing the process -- or of avoiding it by designing alloys that are less vulnerable to embrittlement.

The key to the new monitoring process was devising a way of exposing metal surfaces to a hydrogen environment while inside the vacuum chamber of a scanning electron microscope (SEM). Because the SEM requires a vacuum for its operation, hydrogen gas cannot be charged into the metal inside the instrument, and if precharged, the gas diffuses out quickly. Instead, the researchers used a liquid electrolyte that could be contained in a well-sealed chamber, where it is exposed to the underside of a thin sheet of metal. The top of the metal is exposed to the SEM electron beam, which can then probe the structure of the metal and observe the effects of the hydrogen atoms migrating into it.

The hydrogen from the electrolyte "diffuses all the way through to the top" of the metal, where its effects can be seen, Tasan says. The basic design of this contained system could also be used in other kinds of vacuum-based instruments to detect other properties. "It's a unique setup. As far as we know, the only one in the world that can realize something like this," he says.

In their initial tests of three different metals -- two different kinds of stainless steel and a titanium alloy -- the researchers have already made some new findings. For example, they observed the formation and growth process of a nanoscale hydride phase in the most commonly used titanium alloy, at room temperature and in real time.

Devising a leakproof system was crucial to making the process work. The electrolyte needed to charge the metal with hydrogen, "is a bit dangerous for the microscope," Tasan says. "If the sample fails and the electrolyte is released into the microscope chamber," it could penetrate far into every nook and cranny of the device and be difficult to clean out. When the time came to carry out their first experiment in the specialized and expensive equipment, he says, "we were excited, but also really nervous. It was unlikely that failure was going to take place, but there's always that fear."
-end-
The work was supported by the Exelon Corp.

Written by David L. Chandler, MIT News Office

Related links

Paper: "Microstructural and micro-mechanical characterization during hydrogen charging: An in situ scanning electron microscope study."

http://doi.org/10.1016/j.ijhydene.2018.10.128

ARCHIVE: Conquering metal fatigue

http://news.mit.edu/2017/metal-fatigue-laminated-nanostructure-resistance-fracturing-0309

ARCHIVE: New metal alloys overcome strength-ductility tradeoff

http://news.mit.edu/2016/new-metal-alloys-overcome-strength-ductility-tradeoff-0518

ARCHIVE: Metals aficionado

http://news.mit.edu/2016/metals-aficionado-cem-tasan-0518

Massachusetts Institute of Technology

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".