Nav: Home

New scan technique reveals brain inflammation associated with post-treatment Lyme disease syndrome

February 05, 2019

More than 1 in 10 people successfully treated with antibiotics for Lyme disease go on to develop chronic, sometimes debilitating, and poorly understood symptoms of fatigue and brain fog that may last for years after their initial infection has cleared up. Now, in a small study, Johns Hopkins Medicine researchers report they have used an advanced form of brain scan to show that 12 people with documented post-treatment Lyme disease syndrome (PTLDS) all show elevation of a chemical marker of widespread brain inflammation, compared with 19 healthy controls.

Results of the study, published in Journal of Neuroinflammation, suggest new avenues for treating the long-term fatigue, pain, sleep disruption and "brain fog" associated with PTLDS, the researchers say.

"There's been literature suggesting that patients with PTLDS have some chronic inflammation somewhere, but until now we weren't able to safely probe the brain itself to verify it," says Jennifer Coughlin, M.D., associate professor of psychiatry and behavioral sciences at the Johns Hopkins University School of Medicine, and one of the first authors of the study report.

Lyme disease is a bacterial infection transmitted to humans through tick bites. An estimated 300,000 people in the U.S. are diagnosed with Lyme disease each year, and their infections can be successfully treated with antibiotics. Doctors diagnose PTLDS if treated patients report fatigue and brain fog for at least six months after treatment. Little is known about what causes PTLDS or how to treat it, and while studies have shown that people with PTLDS have elevated markers of inflammation--such as the chemokine CCL19--in their bloodstreams, it has not been clear where that inflammation may be occurring.

Over the last decade, Coughlin and her colleagues optimized a positron emission tomography (PET) imaging technique in which specially labeled molecules--or radiotracers--bind to a protein called translocator protein (TSPO). In the brain, TSPO is released primarily by two types of brain immune cells--microglia and astrocytes--so levels of TSPO are higher when brain inflammation is present.

With this type of PET scan, Coughlin's team says it can visualize levels of TSPO--and therefore levels of inflammation, or astrocyte and microglia activation--throughout the brain. They've used it previously to see inflammation in the brains of former NFL players as well as to study brain inflammation in autoimmune diseases such as lupus.

In the new study, Coughlin's group teamed up with Johns Hopkins Lyme disease researchers and compared PET scans of 12 patients with a diagnosis of PTLDS and 19 without. The PTLDS patients all had a history of confirmed or probable Lyme disease infection, documented evidence of treatment and no history of diagnosed depression. All had reported the presence of fatigue and at least one cognitive deficit such as problems with memory or concentration.

Controls and cases were all adult men (18) and women (13) over age 18 and did not differ significantly in age or body mass index (BMI).

The scans revealed that across eight different regions of the brain, PTLDS patients had significantly higher levels of TSPO compared with controls. On average, when all brain regions were combined and the data was adjusted for genotype, brain region, age and BMI, there was a mean difference of 0.58 between the TSPO levels of controls and patients with PTLDS.

"We thought there might be certain brain regions that would be more vulnerable to inflammation and would be selectively affected, but it really looks like widespread inflammation all across the brain," says Coughlin.

The Johns Hopkins team cautioned that their study was small, and whether or not the results apply to all people with post-treatment Lyme disease syndrome--such as those with chronic pain but not cognitive symptoms--must await far larger and broader studies. In addition, the current study did not include people who recovered from Lyme disease and did not develop PTLDS, a key control group. But for now, the researchers hope their results give PTLDS patients some hope that the science of PTLDS is advancing.

"What this study does is provide evidence that the brain fog in patients with post-treatment Lyme disease syndrome has a physiological basis and isn't just psychosomatic or related to depression or anxiety," says John Aucott, M.D., a senior author of the new paper, associate professor of medicine at the Johns Hopkins University School of Medicine, and director of the Johns Hopkins Lyme Disease Research Center.

In addition, Aucott says, the results suggest that drugs designed to curb neuroinflammation may be able to treat PTLDS, although clinical trials are needed first to determine the safety and benefit of such therapy. Future variations of the PET scan may be able to narrow down more specifically which subsets of microglia and astrocytes are activated, helping guide drug development further, he added.
-end-
Other senior authors on the paper were professor of medicine Mark Soloski, Ph.D., and professor of radiology Martin Pomper, M.D., Ph.D., at the Johns Hopkins University School of Medicine.

Other authors on the paper include Ting Yang, Alison Rebman, Kathleen Bechtold, Yong Du, William Mathews, Wojciech Lesniak, Erica Mihm, Sarah Frey, Erica Marshall, Hailey Rosenthal and Robert Dannals of the Johns Hopkins University School of Medicine, and Tristan Reekie and Michael Kassiou of the University of Sydney.

This work was supported by a Johns Hopkins Discovery Award, the Alexander Wilson Schweizer Fellowship, a Johns Hopkins Doris Duke Foundation Early Clinician Investigator Award, the National Institutes of Health under grant number EB024495 and the Steven and Alexandra Cohen Foundation.

The authors had no competing interests to declare.

Johns Hopkins Medicine

Related Lyme Disease Articles:

New effective vaccines for Lyme disease are coming
There is no effective vaccine currently available to prevent Lyme disease in humans.
New test diagnoses Lyme disease within 15 minutes
Current testing for Lyme disease, called the standard 2-tiered approach or the STT, involves running two complex assays (ELISA and western blot) to detect antibodies against the bacterium, and requires experienced personnel in a lab, and a few hours to carry out and interpret.
An innovative new diagnostic for Lyme disease
In new research, Joshua LaBaer, executive director of the Biodesign Institute at Arizona State University and his colleagues describe an early detection method for pinpointing molecular signatures of the disease with high accuracy.
Mouse, not just tick: New genome heralds change in Lyme disease fight
As Lyme disease increases, researchers have taken a significant step toward finding new ways to prevent its transmission.
Breakthrough paves way for new Lyme disease treatment
Virginia Tech biochemist Brandon Jutras has discovered the cellular component that contributes to Lyme arthritis, a debilitating and extremely painful condition that is the most common late stage symptom of Lyme disease.
Lyme disease predicted to rise in United States as climate warms
A new study looked at the relationship between climatic variables and the incidence of Lyme disease in 15 U.S. states.
New techniques can detect lyme disease weeks before current tests
Researchers have developed techniques to detect Lyme disease bacteria weeks sooner than current tests, allowing patients to start treatment earlier.
Lyme disease: A study on the speed of transmission by infected ticks
Lyme borreliosis is a disease caused by bacteria of the genus Borrelia that are transmitted by a bite from a tick of the genus Ixodes.
Forest ecology shapes Lyme disease risk in the eastern US
In the eastern US, risk of contracting Lyme disease is higher in fragmented forests with high rodent densities and low numbers of resident fox, opossum, and raccoons.
Lyme disease cases among children are on the rise in western Pennsylvania
Doctors found that cases of Lyme disease in children have increased exponentially in western Pennsylvania.
More Lyme Disease News and Lyme Disease Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

Breaking Bongo
Deep fake videos have the potential to make it impossible to sort fact from fiction. And some have argued that this blackhole of doubt will eventually send truth itself into a death spiral. But a series of recent events in the small African nation of Gabon suggest it's already happening.  Today, we follow a ragtag group of freedom fighters as they troll Gabon's president - Ali Bongo - from afar. Using tweets, videos and the uncertainty they can carry, these insurgents test the limits of using truth to create political change and, confusingly, force us to ask: Can fake news be used for good? This episode was reported and produced by Simon Adler. Support Radiolab today at Radiolab.org/donate.