Nav: Home

Leaves are nature's most sophisticated environment sensors

February 05, 2019

New research confirms that leaves are nature's most sophisticated environment sensors. We can therefore use leaves to tell us about the management of the land they are growing in.

Professor of Zoology, Yvonne Buckley at Trinity College Dublin is part of a global network of grassland ecologists who have found that critical plant nutrients such as nitrogen, phosphorus and potassium in leaves respond to fertilisation treatments as well as the climate and soils they are growing in. The discovery has just been published in Nature Ecology & Evolution.

While ecologists and agricultural scientists have known for some time that individual species at individual locations can vary in the amounts of these nutrients in their leaves in response to fertilisation, this is the first time that it has been confirmed across entire communities of plants in very different climates and soil conditions. The experiment was undertaken at 27 sites in four continents, from the semiarid grasslands and savannas of Australia to lush pastures in Europe and prairies in America.

When plants are fertilised they can use those extra nutrients to grow bigger and produce more flowers and seeds which can dilute the nutrients in their leaves, so a positive response of leaf nutrients to fertilisation is not guaranteed. A surprising result of this experiment was that Specific Leaf Area, a leaf trait that is commonly used to tell us about how plants defend themselves against herbivores and capture sunlight for growth, was unaffected by fertilisation. So this critical measure of leaf architecture is not changing in a consistent way in response to fertilisation. Leaf architecture is instead determined by climate and soil characteristics, so it may respond over a longer time frame than short-term fertilisation.

Commenting on the significance of the research, Professor Buckley said:

"As our environment changes more quickly due to climate change, intensification of agriculture and land use, it is becoming more important to understand how grasslands all over the world are likely to respond. Grasslands are one of the most extensive habitats in the world, they provide us with food, carbon storage and habitat for pollinators. Using plants as sensors of environmental change gives us another important tool for understanding the consequences of these changes for our life support systems."

"There are two ways that leaf nutrients can change in grassland communities, either the existing species leaves change to store more nutrients or the kinds of species which can survive in these new conditions change to species that naturally have higher leaf nutrients. We found that for nitrogen and potassium both of these things were happening but for phosphorus the species change pathway was not important."
-end-
The lead author of the paper is Professor Jennifer Firn from Queensland University of Technology with Professor Buckley as a co-author.

Trinity College Dublin

Related Climate Change Articles:

The black forest and climate change
Silver and Douglas firs could replace Norway spruce in the long run due to their greater resistance to droughts.
For some US counties, climate change will be particularly costly
A highly granular assessment of the impacts of climate change on the US economy suggests that each 1°Celsius increase in temperature will cost 1.2 percent of the country's gross domestic product, on average.
Climate change label leads to climate science acceptance
A new Cornell University study finds that labels matter when it comes to acceptance of climate science.
Was that climate change?
A new four-step 'framework' aims to test the contribution of climate change to record-setting extreme weather events.
It's more than just climate change
Accurately modeling climate change and interactive human factors -- including inequality, consumption, and population -- is essential for the effective science-based policies and measures needed to benefit and sustain current and future generations.
Climate change scientists should think more about sex
Climate change can have a different impact on male and female fish, shellfish and other marine animals, with widespread implications for the future of marine life and the production of seafood.
Climate change prompts Alaska fish to change breeding behavior
A new University of Washington study finds that one of Alaska's most abundant freshwater fish species is altering its breeding patterns in response to climate change, which could impact the ecology of northern lakes that already acutely feel the effects of a changing climate.
Uncertainties related to climate engineering limit its use in curbing climate change
Climate engineering refers to the systematic, large-scale modification of the environment using various climate intervention techniques.
Public holds polarized views about climate change and trust in climate scientists
There are gaping divisions in Americans' views across every dimension of the climate debate, including causes and cures for climate change and trust in climate scientists and their research, according to a new Pew Research Center survey.
The psychology behind climate change denial
In a new thesis in psychology, Kirsti Jylhä at Uppsala University has studied the psychology behind climate change denial.

Related Climate Change Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.