Nav: Home

Researchers track down new biocatalysts

February 05, 2019

Phosphate is a key element in many processes in the body and essential for global food production. Researchers at the University of Göttingen have now developed a method to detect new enzymes from the environment that can release phosphate. This opens up new possibilities for the development and optimisation of phytase-based processes for industrial application, biotechnology and environmentally friendly technologies. The results were published in the scientific journal mBio.

Enzymes such as phytases and phosphatases are required to be able to use organically bound phosphate. The research group led by Professor Rolf Daniel from the Institute of Microbiology and Genetics at the University of Göttingen develops standardised methods to isolate novel phosphatases and phytases from complex environmental samples. "The phytases that are currently used commercially, originate from the cultivation of individual strains of microorganisms," says Daniel. "This wastes the potential to develop new, more effective processes through the use of improved enzymes." Phosphates are used as fertilisers in large quantities in conventional agriculture. The increasing depletion of natural phosphorus resources and the pollution of phosphorus deposits with heavy metals make new strategies for the extraction and recycling of phosphates more urgent.

The new method is based on the screening of specially constructed gene libraries from the entire gene pool of organisms in different habitats. The researchers take samples from sediments and soil and clone the whole DNA. They then observe which activities develop in these gene libraries. An innovative screening method is used in which phytate serves as a phosphate source. This enabled the researchers to identify the largest variety of phosphatases and phytases ever obtained using functional metagenomics, including new phytase subtypes with hitherto completely unknown functional groups and new properties.

Phosphatases and phytases are natural biocatalysts that play a central role in many metabolic processes and contribute to the release of organically bound phosphate. Phytases are specialised in the degradation of phytates found in cereals and many other plants. They are already used in the animal feed industry as a feed additive to prevent the phosphate naturally contained in plant food from passing unused through the intestines when feeding non-ruminants such as pigs or poultry. Phytases in particular are therefore considered to have great market potential.
-end-
Original publication: Genis Andrés Castillo Villamizar et al. Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases. mBio 2019. https://doi.org/10.1128/mBio.01966-18.

Contact:

Professor Rolf Daniel
University of Göttingen
Department of Genomic and Applied Microbiology
Grisebachstraße 8
37077 Göttingen, Germany
Phone: +49 (0) 551 39-33827
Email: rdaniel@gwdg.de

Internet: http://www.uni-goettingen.de/en//318960.html

University of Göttingen

Related Enzymes Articles:

How nature builds hydrogen-producing enzymes
A team from Ruhr-Universität Bochum and the University of Oxford has discovered how hydrogen-producing enzymes, called hydrogenases, are activated during their biosynthesis.
New family on the block: A novel group of glycosidic enzymes
A group of researchers from Japan has recently discovered a novel enzyme from a soil fungus.
Surprising enzymes found in giant ocean viruses
A new study led by researchers at Woods Hole Oceanographic Institution (WHOI) and Swansea University Medical School furthers our knowledge of viruses -- in the sea and on land -- and their potential to cause life-threatening illnesses.
How host-cell enzymes combat the coronavirus
Host-cell enzymes called PARP12 and PARP14 are important for inhibiting mutant forms of a coronavirus, according to a study published May 16 in the open-access journal PLOS Pathogens by Stanley Perlman of the University of Iowa, Anthony Fehr of the University of Kansas, and colleagues.
New method enables 'photographing' of enzymes
Scientists at the University of Bonn have developed a method with which an enzyme at work can be 'photographed'.
More Enzymes News and Enzymes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...