Nav: Home

How lung tissue forms immune cell hubs in times of need

February 05, 2019

Key points:
  • Research uncovers how lung tissue is remodelled to support an immune response to influenza.
  • Understanding how specialised immune structures are formed may support the development of vaccines that provide broader protection, for example in the development of novel influenza vaccinations that provide cross-strain protection.
  • Findings are also relevant to understanding a variety of autoimmune diseases and hold promise for the development of new therapeutic strategies.
Immunology researchers at the Babraham Institute have discovered how lung tissue in mice is remodelled in response to infection with influenza in order to support an immune system response. A key result of this tissue remodelling is the production of antibodies with the ability to provide protection against a wider range of related viruses. If the research findings can be applied to the development of the seasonal influenza vaccination, the result would be more robust protection against multiple influenza strains, not just the strain for which the vaccine is optimised against based on global epidemiology predictions. The research is published in the Journal of Experimental Medicine today.

"In the same way that crisis centres are created on the ground in the midst of a humanitarian effort, the immune system can commandeer non-immune-related tissues to create something that resembles an immune cell hub where white blood cells collaborate to generate a co-ordinated response to an invading pathogen." explains Dr Alice Denton, BBSRC Future Leader Fellow at the Babraham Institute.

These transient microenvironments, called germinal centres, are vital for effective immune responses and the generation of our immune 'memory' which provides protection against subsequent infections. Despite their importance in health and disease, how germinal centres are formed in the lungs after infection is unknown.

The researchers found that germinal centre formation in the lungs is initiated via cascade of events, whereby a chemical message (type I interferon) produced by lung cells in response to infection triggers the production of a chemical attractant - a 'come here' flag to the immune system. In response to this signal, B cells (the immune cells that produce antibodies) are recruited to the lungs and initiate the formation of germinal centres. These lung-based germinal centres produce a different repertoire of B cells; ones that produce more broadly reactive antibodies providing cross-protection across different influenza strains.

These findings indicate that understanding the compounds which stimulate a type I interferon response may be useful as vaccine additions to drive cross-protective antibody production in the lungs.

"One important function of germinal centres when responding to infection is that they support the creation of cross-reactive antibodies that can confer wider protection," says Dr Michelle Linterman, research group leader at the Babraham Institute. "Being able to exploit this would be extremely beneficial in the case of the annual influenza vaccination where the vaccination is developed against the likely prevalent strain. In the case of vaccinating against one type of influenza virus, wider protection against other types of influenza strains would reduce infections and thereby improve health."

The research findings are also relevant to understanding immune responses that occur in non-lymphoid tissues and are known to be associated with autoimmune disease, infection, Chronic Obstructive Pulmonary Disease and cancer.

"Understanding how these ectopic immune structures form may enable the development of new therapeutics to specifically target these responses," concludes Dr Denton. "In autoimmune disease, this has the potential to reduce the detrimental immune responses that are targeted against the body's own tissue."
-end-


Babraham Institute

Related Immune System Articles:

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.