Nav: Home

A new culprit of cognitive decline in Alzheimer's disease

February 05, 2019

SAN FRANCISCO, CA--February 5, 2019--It has long been known that patients with Alzheimer's disease have abnormalities in the vast network of blood vessels in the brain. Some of these alterations may also contribute to age-related cognitive decline in people without dementia. However, the ways in which such vascular pathologies contribute to cognitive dysfunction have largely remained a mystery. Until now, that is.

Scientists at the Gladstone Institutes, led by Senior Investigator Katerina Akassoglou, PhD, showed for the first time that a blood-clotting protein called fibrinogen is responsible for a series of molecular and cellular events that can destroy connections between neurons in the brain and result in cognitive decline.

Akassoglou and her team used state-of-the-art imaging technology to study both mouse brains and human brains from patients with Alzheimer's disease. They also produced the first three-dimensional volume imaging showing that blood-brain barrier leaks occur in Alzheimer's disease.

In their study, published in the scientific journal Neuron, the researchers found that fibrinogen, after leaking from the blood into the brain, activates the brain's immune cells and triggers them to destroy important connections between neurons. These connections, called synapses, are critical for neurons to communicate with one another.

Previous studies have shown that elimination of synapses causes memory loss, a common feature in Alzheimer's disease and other dementias. Indeed, the scientists showed that preventing fibrinogen from activating the brain's immune cells protected mouse models of Alzheimer's disease from memory loss.

"We found that blood leaks in the brain can cause elimination of neuronal connections that are important for memory functions," explains Akassoglou, who is also a professor of neurology at UC San Francisco (UCSF). "This could change the way we think about the cause and possible cure of cognitive decline in Alzheimer's disease and other neurological diseases."

The team showed that fibrinogen can have this effect even in brains that lack amyloid plaques, which are the focus of diverse treatment strategies that have failed in large clinical trials. The researchers showed that injecting even extremely small quantities of fibrinogen into a healthy brain caused the same kind of immune cell activation and loss of synapses they saw in Alzheimer's disease.

"Traditionally, the build-up of amyloid plaques in the brain has been seen as the root of memory loss and cognitive decline in Alzheimer's disease," says Mario Merlini, first author of the study and a staff research scientist in Akassoglou's laboratory at Gladstone. "Our work identifies an alternative culprit that could be responsible for the destruction of synapses."

The scientists' data help explain findings from recent human studies in which elderly people with vascular pathology showed similar rates of cognitive decline as age-matched people with amyloid pathology. However, patients with both types of pathology had much worse and more rapid cognitive decline. Other studies also identified vascular pathology as a strong predictor of cognitive decline that can act independently of amyloid pathology.

"Given the human data showing that vascular changes are early and additive to amyloid, a conclusion from those studies is that vascular changes may have to be targeted with separate therapies if we want to ensure maximum protection against the destruction of neuronal connections that leads to cognitive decline," says Akassoglou.

Interestingly, Akassoglou and her colleagues recently developed an antibody that blocks the interaction between fibrinogen and a molecule on the brain's immune cells. In a previous study, they showed this antibody protected mouse models of Alzheimer's disease from brain inflammation and neuronal damage.

"These exciting findings greatly advance our understanding of the contributions that vascular pathology and brain inflammation make to the progression of Alzheimer's disease," said Lennart Mucke, MD, co-author of the study and director of the Gladstone Institute of Neurological Disease. "The mechanisms our study identified may also be at work in a range of other diseases that combine leaks in the blood-brain barrier with neurological decline, including multiple sclerosis, traumatic brain injury, and chronic traumatic encephalopathy. It has far-reaching therapeutic implications."
-end-
About the Study

The paper "Fibrinogen Induces Microglia-Mediated Spine Elimination and Cognitive Impairment in an Alzheimer's Disease Model" was published by the journal Neuron on February 5, 2019: https://www.cell.com/neuron/fulltext/S0896-6273(18)31051-1.

Other authors include Victoria A. Rafalski, Pamela E. Rios Coronado, T. Michael Gill, Maya Ellisman, Gayathri Muthukumar, Keshav S. Subramanian, Jae Kyu Ryu, Catriona A. Syme, and Dimitrios Davalos from Gladstone, as well as William W. Seeley from UCSF, and Robert B. Nelson from Lundbeck Research USA.

The work was supported by the National Institute of Neurological Disorders and Stroke, the Swiss National Science Foundation, the Race to Erase MS, the American Heart Association, the Ray and Dagmar Dolby Family Fund, H. Lundbeck A/S, and the Conrad N. Hilton Foundation.

About the Gladstone Institutes

To ensure our work does the greatest good, the Gladstone Institutes focuses on conditions with profound medical, economic, and social impact--unsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease. It has an academic affiliation with the University of California, San Francisco.

Gladstone Institutes

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab