Nav: Home

A reservoir of bacteria: sink drains next to toilets in patient rooms may harbor dangerous organisms

February 05, 2019

Arlington, Va., February 4, 2019 - Sinks situated next to patient toilets in hospital rooms may be reservoirs for Klebsiella pneumoniae carbapenemase (KPC), increasing the risk of dangerous germ transmission, according to new research published in the American Journal of Infection Control (AJIC), the journal of the Association for Professionals in Infection Control and Epidemiology.

The study found a high prevalence of KPC positivity in sink drains located next to toilets. Of the samples tested, 87.0 percent of patient sinks next to toilets tested positive for KPC - in stark comparison to the 21.7 percent of sink drains located closer to the entry door of the room.

Klebsiella is a type of bacteria that can cause a number of healthcare associated infections, such as pneumonia, bloodstream infections, wound infections, or surgical site infections. Increasingly, Klebsiella bacteria have developed antimicrobial resistance, most recently to the class of antibiotics known as carbapenems.

In four of five rooms in which the entry-door sink tested positive, the sink near the toilet was also positive, suggesting a potential source for cross-contamination within the same room.

Researchers in Milwaukee, Wisconsin performed the study in the medical intensive care unit (MICU) of a 600-bed Wisconsin hospital. The MICU did not have any documented interactions with KPC-producing organisms within the past year.

"This study, if validated, could have major implications for infection control," agree study authors, Blake Buchan, PhD, and Silvia Munoz-Price, MD, PhD. "If sinks next to toilets are indeed a reservoir for KPC, additional interventions - such as modified hand hygiene practices and sink disinfection protocols - may be needed to stem the risk of transmission among healthcare providers and patients alike."

This is the first study to directly examine the relevance of sink proximity to toilets in patient rooms. The researchers point out that while it is not clear how contamination occurs, it is plausible that biofilms growing in pipes shared between toilets and sinks or that flushing generates contaminated drops that reach the sink drains.

"The results of this study demonstrate the importance of remaining vigilant to potential areas of cross-contamination," said 2019 APIC President Karen Hoffmann, RN, MS, CIC, FSHEA, FAPIC. "Maintaining a strong understanding of environmental risks is critical to protecting patient safety, and this is yet another example of how germs can lurk in often the most unexpected of places."
-end-
This study first appeared online in August 2018 and was subsequently published in the January 2019 issue of the American Journal of Infection Control. It is openly available at https://doi.org/10.1016/j.ajic.2018.06.021.

Elsevier

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...