Nav: Home

Novel experiment validates widely speculated mechanism behind the formation of stars

February 05, 2019

How have stars and planets developed from the clouds of dust and gas that once filled the cosmos? A novel experiment at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the validity of a widespread theory known as "magnetorotational instability," or MRI, that seeks to explain the formation of heavenly bodies.

The theory holds that MRI allows accretion disks, clouds of dust, gas, and plasma that swirl around growing stars and planets as well as black holes, to collapse into them. According to the theory, this collapse happens because turbulent swirling plasma, technically known as "Keplerian flows," gradually grows unstable within a disk. The instability causes angular momentum -- the process that keeps orbiting planets from being drawn into the sun -- to decrease in inner sections of the disk, which then fall into celestial bodies.

Unlike orbiting planets, the matter in dense and crowded accretion disks may experience forces such as friction that cause the disks to lose angular momentum and be drawn into the objects they swirl around. However, such forces cannot fully explain how quickly matter must fall into larger objects for planets and stars to form on a reasonable timescale.

MRI experiment

At PPPL, physicists have simulated the hypothesized broader process in the laboratory's MRI experiment. The unique device consists of two concentric cylinders that rotate at different speeds. In this experiment, researchers filled the cylinders with water and attached a water-filled plastic ball tethered by a spring to a post in the center of the device; the stretching and bending spring mimicked the magnetic forces in the plasma in accretion disks. Researchers then rotated the cylinders and videoed the behavior of the ball as seen from the top down.

The findings, reported in Communications Physics, compared the motions of the spring-tethered ball when rotating at different speeds. "With no stretching, nothing happens to the angular momentum," said Hantao Ji, a professor of astrophysical sciences at Princeton University and principal researcher on the MRI and a coauthor of the paper. "Nothing also happens if the spring is too strong."

However, direct measurement of the results found that when the spring-tethering was weak -- analogous to the condition of the magnetic fields in accretion disks --behavior of the angular momentum of the ball was consistent with MRI predictions of developments in a real accretion disk. The findings showed that the weakly tethered rotating ball gained angular momentum and shifted outward during the experiment. Since the angular momentum of a rotating body must be conserved, any gains in momentum must be matched by a loss of momentum in the inner section, allowing gravity to draw the disk into the object it has been orbiting.
-end-
Contributing to research for this paper was lead author Derek Hung, a former Princeton graduate student, together with physicists Erik Gilson and Kyle Caspary of PPPL and astrophysicist Eric Blackman of the Laboratory for Laser Energetics at the University of Rochester, who brought up the idea. Support for this work comes from NASA, the National Science Foundation, the DOE Office of Science, the Simons Foundation, the Institute for Advanced Study, and the Kavli Institute for Theoretical Physics.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov (link is external).

DOE/Princeton Plasma Physics Laboratory

Related Planets Articles:

Ultracool dwarf and the 7 planets
Astronomers have found a system of seven Earth-sized planets just 40 light-years away.
ALMA measures size of seeds of planets
Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA), have for the first time, achieved a precise size measurement of small dust particles around a young star through radio-wave polarization.
Origin of minor planets' rings revealed
A team of researchers has clarified the origin of the rings recently discovered around two minor planets known as centaurs, and their results suggest the existence of rings around other centaurs.
Are planets setting the sun's pace?
The sun's activity is determined by the sun's magnetic field.
A better way to learn if alien planets have the right stuff
A new method for analyzing the chemical composition of stars may help scientists winnow the search for Earth 2.0.
A new Goldilocks for habitable planets
The search for habitable, alien worlds needs to make room for a second 'Goldilocks,' according to a Yale University researcher.
Probing giant planets' dark hydrogen
Hydrogen is the most-abundant element in the universe, but there is still so much we have to learn about it.
Universe's first life might have been born on carbon planets
Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life.
Number of habitable planets could be limited by stifling atmospheres
New research has revealed that fewer than predicted planets may be capable of harbouring life because their atmospheres keep them too hot.
Footprints of baby planets in a gas disk
A new analysis of the ALMA data for a young star HL Tauri provides yet more firm evidence of baby planets around the star.

Related Planets Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...