Breaking up amino acids with radiation

February 05, 2020

Small organic molecules, including the amino acids that form the 'building blocks' of proteins in living cells, fragment to form ions under the impact of high-energy radiation such as electron beams. A new study published in EPJ D has now shown what happens when electrons collide with one amino acid, glutamine. The extent of the damage and the nature of the ions formed are both affected by the energy of the colliding electrons. This work arises from a collaboration between experimental physicists led by Alexander Snegursky at the Institute of Electron Physics, Uzhgorod, Ukraine and theoreticians led by Jelena Tamuliene at Vilnius University, Vilnius, Lithuania.

The damaging effect of very high-energy radiation on human tissue is well-known from disasters such as the nuclear accidents at Chernobyl and Fukushima. However, the long-term effects experienced by survivors of such disasters, including an increased risk of cancer, are partly caused by the impact of rather lower-energy radiation. The groups chose to study the effect of electron impact on amino acids because they are less widely studied in this context than DNA.

Snegursky and his colleagues used mass spectrometry to measure the mass-to-charge ratio and thus determine the nature of chemical fragments produced when one biologically important amino acid, glutamine, was bombarded with uniform electron beams with different radiation doses. Meanwhile, the theoretical team modelled the electronic and geometric structures of glutamine and its fragments using quantum mechanics. The observed fragmentation patterns differed according to the radiation dose that the molecules received, and the experimental results were largely borne out by the simulations. The study authors believe that this basic research will have implications for understanding the effect of ionising radiation on human cells, improving the selectivity of radiotherapy beams for cancer cells, and even, perhaps, understanding the origin of life.
-end-
Reference

J. Tamuliene, L. Romanova, V. Vukstich and A.Snegursky (2020) High-energy ionizing radiation influence on the fragmentation of glutamine, European Physical Journal D 74:13, DOI: 10.1140/epjd/e2019-100523-7

Springer

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.