Nav: Home

Putting a finger on plant stress response

February 05, 2020

Tsukuba, Japan - Post-translational modification is the process whereby proteins are modified after their initial biosynthesis. Modification can take many forms, including enzymatic cleavage of the protein or the addition of sugars, lipids, or small chemical groups. Amongst other things, post-translational modification enhances protein stability, mediates interactions between proteins, and can be used to mark proteins for transport or degradation.

In a report published this month in Communications Biology, researchers from the University of Tsukuba have found that one such post-translational modification, called sumoylation, in Arabidopsisthaliana relies on a single zinc finger domain within SUMO E3 ligase SIZ1. Without this domain, the function of the SIZ1 protein is impaired, resulting in stunted plant growth and increased sensitivity to stressful conditions such as low temperature.

Sumoylation involves the attachment of small SUMO proteins to target proteins, affecting how they function, where they are situated within the cell, and when they are degraded. In plants, this post-translational modification is involved in the response to cold, salt, and drought stresses, as well as in innate immunity and the regulation of signalling pathways. In A. thaliana, the attachment of SUMO to target proteins is mediated by an E3 ligase called SIZ1, which, although very similar to homologous proteins in yeast and animals, contains a unique PHD zinc finger-like domain.

"The importance of SIZ1 for effective sumoylation in Arabidopsis is well known," explains lead author of the study Professor Kenji Miurasiz. "However, the significance of the PHD finger in the function of SIZ1, and ultimately sumoylation, was less clear."

To investigate the biological importance of the PHD finger, the researchers expressed intact SIZ1 or SIZ1 missing the PHD finger in an Arabidopsis siz1 mutant. While intact protein restored normal growth, plants expressing SIZ1 without the PHD finger continued to show the growth retardation, cold sensitivity, and drought tolerance that are characteristic of the siz1 mutant, confirming that the PHD finger is required for SIZ1 function.

The researchers also showed that PHD containing a point mutation no longer recognized tri-methylated histone, a protein involved in gene regulation, and a SIZ1 protein containing this mutation also failed to rescue the siz1 phenotype.

"Based on our findings, we predict that PHD is essential for recognition of tri-methylated histone," says co-author Associate Professor Takuya Suzaki. "Because tri-methylated histone accumulates at high levels in the promotor region of a stress response-associated transcription factor in the siz1 mutant, it is likely that PHD is essential for transcriptional gene suppression by SIZ1/SUMO in response to abiotic stress in Arabidopsis."

University of Tsukuba

Related Proteins Articles:

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.
New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.
Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.
Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.
Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.
Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.
Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.
Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.
How proteins become embedded in a cell membrane
Many proteins with important biological functions are embedded in a biomembrane in the cells of humans and other living organisms.
Finding the proteins that unpack DNA
A new method allows researchers to systematically identify specialized proteins called 'nuclesome displacing factors' that unpack DNA inside the nucleus of a cell, making the usually dense DNA more accessible for gene expression and other functions.
More Proteins News and Proteins Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at