Nav: Home

Novelty speeds up learning thanks to dopamine activation

February 05, 2020

Brain scientists led by Sebastian Haesler (NERF, empowered by IMEC, KU Leuven and VIB) have identified a causal mechanism of how novel stimuli promote learning. Novelty directly activates the dopamine system, which is responsible for associative learning. The findings have implications for improving learning strategies and for the design of machine learning algorithms.

Novelty and learning


A fundamental type of learning, known as associative learning, is commonly observed in animals and humans. It involves the association of a stimulus or an action with a positive or negative outcome. Associative learning underlies many of our every-day behaviors: we reward children for doing their homework, for example, or limit their TV time if they misbehave.

Scientists have known since the 1960's that novelty facilitates associative learning. However, the mechanisms behind this phenomenon remained unknown.

"Previous work suggested that novelty might activate the dopamine system in the brain. Therefore we thought that dopamine activation might also promote associative learning." says Prof. Sebastian Haesler, who led the study.

Sniffing out novelty


To demonstrate that novelty indeed activates dopamine neurons, the researchers exposed mice to both new and familiar smells.

"When mice smell a novel stimulus, they get very excited and start sniffing very rapidly. This natural, spontaneous behavior provides a great readout for novelty perception." explains Dr. Cagatay Aydin, postdoc in the group of Sebastian Haesler. With the mouse experiments, the team confirmed dopamine neurons were activated by new smells, but not by familiar ones.

In a second step, the mice were trained to associate novel and familiar smells with reward.

"When we specifically blocked dopamine activation by novel stimuli in only a few trials, learning was slowed down. On the other hand, stimulating dopamine neurons during the presentation of familiar stimuli accelerated learning." says Joachim Morrens, PhD student in the group.

The value of novelty


The findings demonstrate that dopamine activation by novel stimuli promotes learning. They further provide direct experimental support for a group of theoretical frameworks in computer science, which incorporate a 'novelty bonus' to account for the beneficial effect of novelty. Incorporating such a bonus can speed up machine learning algorithms and improve their efficiency.

From a very practical perspective, the results remind us to break our routine more often and seek out novel experiences to be better learners.
-end-
Publication

Morrens et al. 2020. Cue-evoked dopamine promotes conditioned responding during learning. Neuron

Funding

Funding came from HFSP, EC Marie Curie and FWO.

Questions from patients

A breakthrough in research is not the same as a breakthrough in medicine. The realizations of VIB researchers can form the basis of new therapies, but the development path still takes years. This can raise a lot of questions. That is why we ask you to please refer questions in your report or article to the email address that VIB makes available for this purpose: patienteninfo@vib.be. Everyone can submit questions concerning this and other medically-oriented research directly to VIB via this address.

VIB (the Flanders Institute for Biotechnology)

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.