Nav: Home

Unveiling how lymph nodes regulate immune response

February 05, 2020

Pathogens such as severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and recently the novel coronavirus in Wuhan, China (2019-nCoV) have been a global threat. Lymph nodes (LNs) fight against infectious diseases by providing a shelter for immune cells to grow and launch an attack against pathogens. However, LNs' particular inner workings are poorly understood.

Scientists led by KOH Gou Young at the Center for Vascular Research, within the Institute for Basic Science (IBS), with collaborators of the Korea Advanced Institute of Science and Technology (KAIST), South Korea, have found that a chain of chemical reactions, known as the Hippo-YAP/TAZ signaling pathway, that plays a dominant role in the formation and maintenance of LNs. Their findings have been reported in the journal Nature Communications.

One of the key components of LNs are fibroblastic reticular cells (FRCs), which form LN's basic infrastructure and trigger immune responses by releasing cytokines, which are proteins important for immunity. Functional FRCs form during LN's development: a poorly defined population of mesenchymal cells differentiate into FRC precursors, which further develop into mature FRCs with immune functions. Whereas the molecular details involved in the latter process, such as lymphotoxin-β receptor (LTβR) signaling, have been thoroughly described, the details of the commitment steps of FRC development are still unclear.

The research team confirmed the importance of the Hippo pathway - a key regulator of cellular proliferation and organ size control - in FRCs' maturation. The researchers used more than 20 different genetically modified mouse models to characterize the Hippo pathway at specific time points, depleting the proteins YAP/TAZ at various stages of FRC development.

"As I witnessed the enriched expression of YAP/TAZ in fibroblastic reticular cells of lymph nodes, I knew there must be a role of the Hippo pathway in FRCs," says CHOI Sung Yong, first co-author of this study.

By performing a careful examination of the mice's LNs, the team found that FRCs transform into fat cells when YAP/TAZ are reduced in FRC precursors.

BAE Hosung, first co-author of this study, explains, "It was like a mathematic equation, when we drew out the findings on the blackboard, we were sure that depleting YAP/TAZ in fibroblastic reticular cell precursors would show an effect on the lymph nodes."

The researchers found that YAP/TAZ binding to p52 is required for maintaining FRC identity. JEONG Sun-Hye, first co-author of this study, notes, "I had this basic instinct that YAP/TAZ should bind with key components that regulate fibroblastic reticular cell identity, such as p52."

Future research will focus on determining whether diseases or conditions that affect systemic immune responses can be linked to alterations in the Hippo signaling pathway in FRCs, and whether modulating Hippo signaling within FRCs could serve as a viable therapeutic option. Beyond their importance in the immune response against flu, FRCs have recently gained considerable recognition for their role in cancer progression and patient outcome. The degree of stromal fibrosis within metastatic LNs is an important prognostic factor that significantly affects disease-free survival of cancer patients. "It definitely warrants more extensive investigation of fibroblastic reticular cells in patients with tumor lymph node metastases prior to clinical investigation," adds Koh.
-end-


Institute for Basic Science

Related Immune Response Articles:

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.
Unveiling how lymph nodes regulate immune response
The Hippo pathway keeps lymph nodes' development healthy. If impaired, lymph nodes become full of fat cells or fibrosis develops.
Early immune response may improve cancer immunotherapies
Researchers report a new mechanism for detecting foreign material during early immune responses.
Researchers decode the immune response to Ebola vaccine
The vaccine rVSV-EBOV is currently used in the fight against Ebola virus.
Immune response depends on mathematics of narrow escapes
The way immune cells pick friends from foes can be described by a classic maths puzzle known as the 'narrow escape problem'.
Signature of an ineffective immune response to cancer revealed
Our immune system is programmed to destroy cancer cells. Sometimes it has trouble slowing disease progression because it doesn't act quickly or strongly enough.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Having stressed out ancestors improves immune response to stress
Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers.
Researchers discovered new immune response regulators
The research groups of Academy Professor Riitta Lahesmaa and Research Director Laura Elo from Turku Centre for Biotechnology have discovered new proteins that regulate T cells in the human immune system.
Blueprint for plant immune response found
Washington State University researchers have discovered the way plants respond to disease-causing organisms, and how they protect themselves, leading the way to potential breakthroughs in breeding resistance to diseases or pests.
More Immune Response News and Immune Response Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.