Sensor and detoxifier in one

February 05, 2021

Ozone is a problematic air pollutant that causes serious health problems. A newly developed material not only quickly and selectively indicates the presence of ozone, but also simultaneously renders the gas harmless. As reported by Chinese researchers in Angewandte Chemie, the porous "2-in-one systems" also function reliably in very humid air.

Ozone (O(3)) can cause health problems, such as difficulty breathing, lung damage, and asthma attacks. Relevant occupational safety regulations therefore limit the concentrations of ozone allowable in the workplace. Previous methods for the detection of ozone, such as those based on semiconductors, have a variety of disadvantages, including high power consumption, low selectivity, and malfunction due to humid air. Techniques aimed at reducing the concentration of ozone have thus far been based mainly on activated charcoal, chemical absorption, or catalytic degradation.

A team led by Zhenjie Zhang at Nankai University (Tianjin, China) set themselves the goal of developing a material that can both rapidly detect and efficiently remove ozone. Their approach uses materials known as covalent organic frameworks (COFs). COFs are two- or three-dimensional organic solids with extended porous crystalline structures; their components are bound together by strong covalent bonds. COFs can be tailored to many applications through the selection of different components.

The researchers selected easily producible, highly crystalline COFs made of aromatic ring systems. The individual building blocks are bound through connective groups called imines (a nitrogen atom bound to a carbon atom by a double bond). These are at the center of the action.

The imine COFs indicate the presence of ozone through a rapid color change from yellow to orange-red, which can be seen with the naked eye and registered by a spectrometer. Unlike many other detectors, the imine COF also works very reliably, sensitively, and efficiently at high humidity and over a wide temperature range. In the presence of water, the water molecules will preferentially bind to the imine groups. Consequently, the researchers assert, a hydroxide ion (OH(?)) is released, which reacts with an ozone molecule. The positively charged hydrogen atom remains bound to the imine group, causing the color change. If more ozone than water is present (or the ozone-laden air is fully dry), the excess ozone binds to the imine groups and splits them. Each imine group degrades two molecules of ozone. This also causes a color change and the crystalline structure slowly begins to collapse. The imine COF thus doesn't just detect the ozone, but also reliably and efficiently breaks the harmful gas down. This makes it more effective than many of the traditional materials employed for this purpose.
-end-
About the Author

Dr. Zhenjie Zhang is a full Professor of inorganic chemistry at Nankai University. He is currently focusing on developing new crystalline porous materials (e.g., MOFs, COFs, and cages) for value-added product separation and purification, as well as creating smart materials for sensors, actuators, or robots. He is a recipient of the ACS-DIC Young Investigator Award and the CCS JINGQING Chemistry Investigator Award.

mailto:zhangzhenjie@nankai.edu.cn

Wiley

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.