Technion researchers discover new pathway for attacking cancer cells

February 05, 2021

When treating cancer, researchers are always searching for ways to remove cancer cells while minimizing damage to the rest of the body. One possible approach is to find processes unique to cancer cells, and which would allow specific targeting. If such a process can be disrupted, only those cells would be affected.

A process (or absence thereof) can be unique to some types of cancer, and not be present in others. In such a case, we would want a simple way to recognize whether a particular tumor possesses the unique trait or not. The implication of this question is whether the tumor would respond to this or that treatment, allowing us to match a treatment to the patient who is likely to be helped by it, rather than going by trial and error.

Professor Tomer Shlomi's research group discovered just such a process - one that may be targeted in cancer cells without causing damage to healthy ones, findings that have been published in Cell Metabolism.

The folate cycle is a process essential to DNA and RNA production. As a result, it is highly important to both cancer cells and healthy cells. Because DNA production is a critical stage in cell division, and thus in tumor growth, the folate cycle is a common target for chemotherapy. However, for the very same reason, there are significant side effects to attacking it.

There are, in fact, two folate cycles - one happening in the mitochondria (an organelle inside the cell), and one in the cytosol (the fluid that fills the cell). A healthy cell can switch from one to the other. A variety of tumor cells, Professor Shlomi's group discovered, rely on the cytosolic pathway exclusively. The implication is, if treatment were to target the cytosolic folate cycle, healthy cells would switch to the mitochondrial cycle and would not be harmed, leaving tumor cells to die.

It remains to recognize whether a particular tumor is indeed one in which the mitochondrial folate cycle is non-functional, and here too Shlomi's team provided. RFC is a transporter protein that regulates intracellular folate levels. Low RFC - low folate. Low folate, the group discovered, is devastating to the mitochondrial cycle. So low RFC tumors are the ones that would be affected by cytosolic cycle-blocking treatments.

Both the pathway that may be attacked, and the way to recognize which tumors the attack would be effective against have thus been found.
-end-


Technion-Israel Institute of Technology

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.