New drug targets for childhood cancer neuroblastoma identified

February 05, 2021

The largest single cell study to date of the childhood cancer, neuroblastoma, has answered important questions about the genesis of the disease. The researchers from the Wellcome Sanger Institute, Great Ormond Street Hospital (GOSH) and the Princess Máxima Center for Pediatric Oncology, discovered that all neuroblastomas arise from a single type of embryonic cell called sympathoblasts.

The study, published today (5 February 2021) in Science Advances, sought to understand why neuroblastomas range in severity, with some easy to treat and others having relatively low five-year survival rates. The fact that all neuroblastomas arise from sympathoblasts makes them an attractive drug target, because these cells exist only in the tumour after the child is born.

Neuroblastoma is a rare cancer that generally affects children under five years old. It begins in the abdomen, usually in the adrenal glands - hormone-producing glands above the kidneys. Neuroblastoma is remarkable in that its severity can vary greatly between individuals. In some children the cancer will disappear without treatment, whereas in others the cancer is relentless. The five-year survival rate for neuroblastoma is one of the lowest of all childhood cancers*.

This varied outlook prompted the researchers to ask whether the range of severity could be caused by neuroblastomas arising from different cell types at different stages of the child's development in the womb. This was made possible by the advent of single cell mRNA sequencing, a high-resolution technology that can identify different cell types present in a tissue according to the genes expressed by individual cells.

In this study, gene expression of 19,723 cancer cells was analysed and compared to a reference of 57,972 developmental adrenal cells in the hope of identifying the cell types from which neuroblastomas arise and to find novel treatment targets.

Dr Jan Molenaar, a senior author of the study from the Princess Máxima Center for Pediatric Oncology in the Netherlands, said: "What is most striking about our findings is that despite the great diversity of clinical behaviour of neuroblastoma, there is an overarching neuroblastoma cell type that is found in all patients. The identification of sympathoblasts as the root of all neuroblastoma is an important step towards understanding how the disease develops and, hopefully, how we can treat it."

Currently, many cancer treatments cause serious side effects for the patient. But in recent years, technological advances have sped up drug development by allowing researchers to identify differences between the biological processes, such as the expression of a particular gene, within healthy human cells and those within cancerous ones. These differences can be exploited to attack cancer cells without affecting the patient's healthy cells.

The presence of sympathoblasts, a developmental cell type not normally found in children after they are born, makes it a promising drug target for the treatment of neuroblastoma.

Dr Karin Straathof, a senior author of the study from Great Ormond Street Hospital, said: "Neuroblastoma is an unusual cancer in that some tumours resolve without intervention, yet the disease still has one of the lowest five-year survival rates of any childhood cancer. This study fills important gaps in our knowledge of what neuroblastoma cells are and revealed novel treatment targets. My hope is that new, less intrusive therapies can be developed by targeting sympathoblasts, a developmental cell type that exists only in neuroblastoma tumours after a child is born."

As well as facilitating the discovery of sympathoblasts as the root of neuroblastoma, the single-cell reference map of the developmental adrenal gland will also contribute to the Human Cell Atlas project**. The project aims to create comprehensive reference maps of all types of human cells - the fundamental units of life - as a basis for understanding human health and diagnosing, monitoring, and treating disease.

Dr Sam Behjati, a senior author of the study from the Wellcome Sanger Institute and Cambridge University Hospitals, said: "Our study shows the power of looking at individual childhood cancer cells in revealing not just one, but a plethora of novel treatment ideas. This raises the exciting prospect that a single cell atlas of all types of paediatric tumours may transform our understanding of childhood cancer."
-end-
Contact details:

Dr Matthew Midgley
Press Office
Wellcome Sanger Institute
Cambridge, CB10 1SA
Phone: 01223 494856
Email: press.office@sanger.ac.uk

Notes to Editors:

*More information on neuroblastoma is available from Cancer Research UK:
https://www.cancerresearchuk.org/about-cancer/childrens-cancer/neuroblastoma/about

**More information about the Human Cell Atlas (HCA) project is available here:
https://www.humancellatlas.org/

Publication:

Gerda Kildisiute, Waleed M. Kholosy, Matthew D. Young et al. (2021). Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer cell. Science Advances. DOI: https://doi.org/10.1126/sciadv.abd3311

Funding:

This study was funded by Wellcome. Additional funding was received from the St Baldrick's Foundation and the National Institute for Health Research (NIHR).

Selected websites:

About the Princess Máxima Center

Every year some 600 children in the Netherlands are diagnosed with cancer. One in four children with cancer still dies from the disease.

In order to cure children from cancer, all care and research in the Netherlands is concentrated in the Princess Máxima Center for pediatric oncology in Utrecht. More than ten years ago, parents and healthcare professionals took the initiative. The new pediatric oncology center was opened by Queen Máxima of the Netherlands on 5 June 2018.

The mission of the Princess Máxima Center is to cure every child with cancer, with optimal quality of life. The Princess Máxima Center is the largest pediatric oncology center in Europe where care and research are closely intertwined. Approximately 400 scientists and more than 800 healthcare professionals work closely together.

About Research at Great Ormond Street Hospital

Great Ormond Street Hospital is one of the world's leading children's hospitals with the broadest range of dedicated, children's healthcare specialists under one roof in the UK. The hospital's pioneering research and treatment gives hope to children from across the UK with the rarest, most complex and often life-threatening conditions. All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research Centre.

The Wellcome Sanger Institute

The Wellcome Sanger Institute is a world leading genomics research centre. We undertake large-scale research that forms the foundations of knowledge in biology and medicine. We are open and collaborative; our data, results, tools and technologies are shared across the globe to advance science. Our ambition is vast - we take on projects that are not possible anywhere else. We use the power of genome sequencing to understand and harness the information in DNA. Funded by Wellcome, we have the freedom and support to push the boundaries of genomics. Our findings are used to improve health and to understand life on Earth. Find out more at http://www.sanger.ac.uk or follow us on Twitter, Facebook, LinkedIn and on our Blog.

About Wellcome

Wellcome exists to improve health by helping great ideas to thrive. We support researchers, we take on big health challenges, we campaign for better science, and we help everyone get involved with science and health research. We are a politically and financially independent foundation.
https://wellcome.org/

Wellcome Trust Sanger Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.