Study identifies 'Achilles heel' of bacteria linked to Crohn's disease

February 05, 2021

The discovery of an "Achilles heel" in a type of gut bacteria that causes intestinal inflammation in patients with Crohn's disease may lead to more targeted therapies for the difficult to treat disease, according to Weill Cornell Medicine and NewYork-Presbyterian investigators.

In a study published Feb. 3 in Cell Host and Microbe, the investigators showed that patients with Crohn's disease have an overabundance of a type of gut bacteria called adherent-invasive Escherichia coli (AIEC), which promotes inflammation in the intestine. Their experiments revealed that a metabolite produced by the bacteria interacts with immune system cells in the lining of the intestine, triggering inflammation. Interfering with this process, by either reducing the bacteria's food supply or eliminating a key enzyme in the process relieved gut inflammation in a mouse model of Crohn's disease.

"The study reveals a therapeutically targetable weak point in the bacteria," said senior author Dr. Randy Longman, associate professor of medicine in the Division of Gastroenterology and Hepatology and the Director of the Jill Roberts Center for Inflammatory Bowel Disease at Weill Cornell Medicine and NewYork-Presbyterian/Weill Cornell Medical Center.

To find this "Achilles heel," Dr. Longman and his colleagues, including Drs. Ellen Scherl and Chun-Jun Guo at Weill Cornell Medicine and collaborators Dr. Gretchen Diehl at Memorial Sloan Kettering and Dr. Kenneth Simpson at Cornell's Ithaca campus, targeted a process the AIEC bacteria uses to convert a byproduct of sugar fermentation in the gut to grow. Specifically, the AIEC uses 1,2-propanediol, a byproduct of the breakdown of a type of sugar called fucose that is found in the lining of the intestines. When the AIEC converts 1,2-propanediol, it produces propionate, which the study showed interacts with a type of immune system cell called mononuclear phagocytes that are also found in the lining of the gut. This sets off a cascade of inflammation.

Next, the investigators genetically engineered AIEC bacteria to lack a key enzyme in this process called propanediol dehydratase. Without propanediol dehydratase, the bacteria do not set off a cascade of inflammation in a mouse model of Crohn's disease. Reducing the available supply of fucose in the animal's gut also reduced inflammation.

"Changing one metabolic pathway in one type of bacteria can have a big impact on intestinal inflammation," said the study's co-lead author Dr. Monica Viladomiu, a post-doctoral associate in medicine in the Division of Gastroenterology and Hepatology and in the Jill Roberts Institute for Research in Inflammatory Bowel Disease at Weill Cornell Medicine. Maeva Metz, a Weill Cornell Medicine Graduate School of Medical Sciences doctoral candidate in Dr. Longman's laboratory, is also co-lead author.

The discovery could lead to better treatments for Crohn's disease, a type of inflammatory bowel disease that affects more than 4 million people worldwide. Currently, patients with Crohn's disease are often treated with antibiotics, which can kill both beneficial and harmful bacteria causing unwanted side effects. But treatments that precisely target the inflammatory cascade discovered by Dr. Longman and colleagues might help reduce inflammation while preserving beneficial bacteria.

"If we can develop small molecule drugs that inhibit propanediol dehydratase or use dietary modifications to reduce the availability of fucose, we may be able to reduce intestinal inflammation in patients with Crohn's disease with fewer side effects," said Dr. Longman, who is also a member of the Jill Roberts Institute for Research in Inflammatory Bowel Disease.

One of the next steps for the team will be testing potential treatments. They also plan to study the potential role of an enzyme called fucosyltransferase 2 in protecting the gut against this inflammatory cascade. Dr. Longman explained that many patients with Crohn's disease have mutations in the gene that encodes this enzyme, rendering it nonfunctional.

"From a clinical perspective, that's interesting because it may help us stratify people for whom one intervention or another maybe more useful," Dr. Longman said.
-end-


Weill Cornell Medicine

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.