The Value Of Real-Time Lightning Detection

February 05, 1997

Future space-based lightning detection and reporting of lightning flashes in real-time will provide valuable additional information to existing weather sensing systems. This capability will give weather forecasters the ability to more readily evaluate threats due to lightning, thunderstorm intensity and growth, as well as storm dissipation throughout the United States.

These are the conclusions of research conducted by scientists from NASA's Marshall Space Flight Center and the Global Hydrology and Climate Center in Huntsville, Alabama, in conjunction with researchers at the Massachusetts Institute of Technology (MIT), NASA's Kennedy Space Center, the National Weather Service (NWS) Office in Melbourne, Florida, and operational meteorologists with the U.S. Air Force's (USAF) 45th Weather Squadron at Cape Canaveral Air Station. The results will be presented today at the American Meteorological Society Seventh Conference on Aviation, Range, and Aerospace Meteorology in Long Beach, California.

In the summer of 1996, scientists began a study to determine how continuous, real-time lightning detection from space might provide added knowledge to the weather forecaster in the identification and warning of thunderstorm hazards.

"Past studies have repeatedly indicated the strong correlation between electrification and the dynamics of thunderstorms," said Dr. Steven Goodman of the NASA/Marshall Space Flight Center, and principal investigator of the experiment. "What we have done here is develop these concepts into real-time algorithms." The scientists developed an interactive display environment that promotes the use of total lightning measurements, in addition to conventional radar data, as an indicator in identifying severe storms and storm morphology.

The Melbourne (Florida) Weather Service Office was selected as a testbed to conduct this study because of the unique availability of real-time lightning and radar data. It serves as an experimental forecast office for the NWS, and as an Applied Meteorology Unit for NASA, USAF, and NWS.

The enhancements to lightning detection and forecasting capabilities could also improve space launch weather support at USAF/Cape Canaveral Air Station and NASA/Kennedy Space Center. Natural triggered lightning hazards are a significant threat to space launch. Approximately one-third of the launches are delayed or scrubbed due to adverse weather. According to Mr. William Roeder, 45th Weather Squadron's Chief, operations Support Flight, the launch weather teams would benefit from improved lightning sensing and warning.

An additional element of the experiment involves the use of space-based observations of both in-cloud and ground discharges from NASA's Optical Transient Detector (OTD). The OTD data are available 12-24 hours following collection for retrospective analysis and validation studies. The OTD, launched in April 1995 as a scientific payload aboard the MicroLab-1 satellite, is in a low-earth orbit, and provides an early demonstration of the technology to map lightning from space at storm-scale resolution both day and night. The satellite is at an orbital altitude of approximately 750 km (about 470 miles), which provides a total field of view of 1300 x 1300 km (813 x 813 miles).

The results presented in the study demonstrate in several ways the incremental value of observing the total lightning in-cloud and the discharges to ground in diagnosing the structure and characteristics of thunderstorms:

NASA is demonstrating that real-time lightning detection from space during day and night with the resolution to resolve individual thunderstorm cells is now possible. "The most capable space sensor developed for lightning detection is the OTD, but we don't yet have continuous observations of the continental United States in real-time," said Goodman. "Therefore, we utilized the local ground-based lightning detection capability to demonstrate the value-added by having real-time detection throughout the thunderstorm life-cycle."

Forthcoming sensors such as the Lightning Imaging Sensor (LIS), scheduled for launch in late 1997 aboard NASA's Tropical Rain Measuring Mission (TRMM-1) observatory, will continue to demonstrate the additional diagnostic storm information provided by observing the lightning produced by thunderstorms. In the future, however, lightning sensors will be placed in geostationary orbit, perhaps on the next generation of operational weather satellites. These sensors will provide lightning data that are available both day and night, and at the forecaster's workstation within 30 seconds of occurrence. From their position in geostationary orbit, these sensors will be able to survey all of the United States and nearby oceans, rather than just one limited geographic area. A constellation of lightning sensors could someday provide global coverage of the major continents and oceans.

NASA/Marshall Space Flight Center--Space Sciences Laboratory

Related Lightning Articles from Brightsurf:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

Ammonia sparks unexpected, exotic lightning on Jupiter
NASA's Juno spacecraft -- orbiting and closely observing the planet Jupiter -- has unexpectedly discovered lightning in the planet's upper atmosphere, according to a multi-institutional study led by the NASA/Jet Propulsion Laboratory (JPL).

Lightning strikes more than 100 million times per year in the tropics
Tropical storms often begin with an impressive display of pyrotechnics, but researchers have largely overlooked the role of lightning strikes in tropical ecosystems.

Using AI to predict where and when lightning will strike
Researchers at EPFL have developed a novel way of predicting lightning strikes to the nearest 10 to 30 minutes and within a radius of 30 kilometers.

Chains of atoms move at lightning speed inside metals
A phenomenon that has previously been seen when researchers simulate the properties of planet cores at extreme pressures has now also been observed in pure titanium at atmospheric pressure.

Lightning 'superbolts' form over oceans from November to February
Lightning superbolts -- which unleash a thousand times more low-frequency energy than regular lightning bolts -- occur in dramatically different patterns than regular lightning, according to a new, nine-year survey of these rare events.

Lightning bolt underwater
Electrochemical cells help recycle CO2. However, the catalytic surfaces get worn down in the process.

Computer scientists predict lightning and thunder with the help of artificial intelligence
Together with Germany's National Meteorological Service, the Deutscher Wetterdienst, computer science professor Jens Dittrich and his doctoral student Christian Schön from Saarland University are working on a system that is supposed to predict local thunderstorms more precisely than before.

Thunderbolt of lightning, gamma rays exciting
University of Tokyo graduate student Yuuki Wada with colleagues from Japan discover a connection between lightning strikes and two kinds of gamma-ray phenomena in thunderclouds.

Why lightning often strikes twice
An international research team led by the University of Groningen has used the LOFAR radio telescope to study the development of lightning flashes in unprecedented detail.

Read More: Lightning News and Lightning Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to