Life Among Dead Brain Cells: Discovery Could Help Improve Memory Capacity Of Stroke Victims

February 05, 1999

NASHVILLE, Feb. 5 -- For years, scientists have believed that brain cells can't be born or newly generated following a stroke. But a new study in rodents finds that some brain cells are actually stimulated to regenerate following a stroke, a discovery that opens the door to treating memory disorders in stroke patients.

According to the study, this is the first evidence of a certain type of brain cell -- called a stem cell -- demonstrating plasticity and the ability to regenerate after a stroke.

Regeneration is the ability of the stem cells to divide and produce new neurons. Plasticity is the ability of the newborn neurons to make connections with existing neurons in the brain and integrate into their surrounding cellular environment. Though other studies have shown that new neurons are born under other conditions, this is the first study to show that new brain cells are born following stroke. The research was performed by inducing stroke in rodents.

"Data show that new neurons are born in the brains of adult monkeys and in the brains of adult humans," says Frank Sharp, M.D., of the department of neurology, University of California-San Francisco and one of the study's investigators. "It is not known whether there are new neurons born in the brains of humans following stroke. We certainly think there would be."

In research presented at the presented today at the American Heart Associations 24th International Conference on Stroke and Cerebral Circulation, scientists at the University of California-San Francisco discovered as much as a 12-fold increase in the birth of new cells in rodents after stroke in an area of the brain -- the hippocampus -- which controls memory.

"This region is important for new memories," says Sharp. "If you lose this region of the brain, you're unable to remember new sights, sounds and other experiences. You might remember your mother and father or something you learned in the eighth grade, but if you were taught a new way through town, you'd be unable to learn the new route."

In the future, say researchers, it may be possible that these stem cells can be stimulated to grow even more, perhaps helping to rewire the brain and help stroke survivors recover lost memory function.

Stem cells are important in the formative stages of brain development. Researchers say stem cells help form neurons, which mature and make the complex circuits that enable the brain to perform its many functions. Stem cells are present in the embryonic brain and remain in the brain throughout life, says Sharp. Most stem cells are located next to the ventricles in the brain and in the hippocampus.

Stem cells are present in the brain throughout life, and Sharp says there is evidence in rodents that the numbers of stem cells and newly formed neurons decreases as the brain ages.

For stroke survivors, recovering speech or motor skills typically requires many years of speech and physical therapy. Sharp cautions that more research is needed to determine whether or not sparking the growth of stem cells can be used as a companion treatment along with current types of therapy.

"The fact of the matter is, after stroke of all types, memory function is frequently impaired," says Sharp. "Though memory function often recovers to at least some extent, the mechanism by which this recovery occurs is not known. The birth of new neurons could very well be the mechanism which leads to memory recovery after ischemia."

Following the blockage of blood flow and decreased oxygen and glucose delivery to the brain -- a condition known as ischemia -- researchers found a 12-fold increase in the birth of new cells in the dentate gyrus of the hippocampus, a region of the temporal lobe that is crucial in laying down all long term memories. Sharp says that following the ischemia, half of the newborn cells become neurons and a quarter of the cells become glial cells.

Sharp says the research is the first to demonstrate that neural stem cells divide into neurons and astrocytes following ischemia. Though neurons are the information cells in the brain, gilal cells called astrocytes have important functions for maintaining the metabolic health of the neurons. Gilal cells have long been considered as only supporting cells, but recent research in the past few years has suggested that these cells are just as important in the transfer of information from the brain to other parts of the body.

The birth of new neurons and glial cells following a stroke could provide a new way to treat stroke survivors, according to Sharp. Recent studies have shown that new neurons are born in the human brain as well, and the hope for the future is that these cells to be stimulated to improve function even more.

"Our studies show that the newborn neurons do not occur because of the death of neurons in ischemic brain," says Sharp. "We are able to produce a degree of ischemia that stimulates neuronal birth without killing other neurons. Therefore, ischemia itself stimulates the new neurons. We believe that this represents a protective response that facilitates memory function that may be disturbed even with brief ischemia."

The study's lead author is Jialing Liu, Ph.D, also of the University of California-San Francisco and the San Francisco VA Hospital.
-end-
Media advisory: Dr. Sharp can be reached by phone at 415-750-2011, by fax at 415-750-2273 or by e-mail at fsharp@itsa.ucsf.edu. (Please do not publish numbers.)



American Heart Association

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.