Nav: Home

Sentinels in the blood: A new diagnostic for pancreatic cancer

February 06, 2017

Despite enormous research strides, detection methods for many diseases remain cumbersome and expensive, and often uncover illness only at advanced stages, when patient outcomes can be bleak. One such illness is pancreatic cancer, which may display no obvious symptoms in its early stages, yet can develop aggressively. Indeed, according to the American Cancer Society, a staggering 80 percent of those stricken with this form of cancer die within 1 year of diagnosis.

Now, however, Tony Hu, a researcher in the Biodesign Virginia G. Piper Center for Personalized Diagnostics and his colleagues have devised a crafty method to identify pancreatic cancer early in its development. Their technique relies on the sensitive detection of extracellular vesicles (EVs) -- tiny bubbles of material emitted from most living cells.

In new research appearing in the advanced online issue of the journal Nature Biomedical Engineering, Dr. Hu and his colleagues describe a method to detect EVs derived from tumors that carry a particular surface protein that functions as a telltale marker for pancreatic cancer. The ability to accurately detect this protein, known as EphA2 may allow it to serve as a signpost that could diagnose even the earliest stages of pancreatic cancer.

"Pancreatic cancer is one type of cancer we desperately need an early blood biomarker for," Hu says. Currently, the only cure for pancreatic cancer remains surgical removal of diseased tissue but in many cases, this is not feasible due to the degree of cancer spread at the time of diagnosis. "Other technology has been used for detection, but it doesn't work very well because of the nature of this cancer. It's really hard to capture an early diagnostic signal when there are no symptoms. It's not like breast cancer, where you may feel pain and you can easily check for an abnormal growth."

This research now demonstrates that a platform that uses the interaction between two different nanoparticles to detect tumor-associated EV's can keenly discriminate between blood samples from patients with pancreatic cancer, pancreatitis--a disease that can share symptoms with pancreatic cancer--and healthy subjects. Further, this technique may ultimately be useful for the rapid and sensitive detection of a range of diseases, based on their unique EV signatures.

Vesicles in focus

EVs are released by both eukaryotic cells (including human cells) and prokaryotic cells, (like bacterial cells, which lack a nucleus or other membrane-bound components). EVs resemble miniature versions of the cells which produce them, though they lack much of the cell's complex machinery.

There are a variety EV types, which develop from their parent cells in different ways. The current study examines a class of EVs known as exosomes, which range in size from 50-150 nm. Exosomes are derived from membrane-bound compartments within the cell (known as endosomes) that eventually fuse with the cell's outer membrane to liberate exosomes into the extracellular space.

Once thought to be mere debris from the cell's metabolic activities, EVs are now recognized as vital components with far-flung responsibilities that are only beginning to come to light. EVs form a subtle and sophisticated communications network operating between cells and are highly conserved across species, suggesting their essential role in life processes. Among their activities are the transfer of nucleic acids, proteins and lipids which may trigger physiological and pathological changes, both in parent and target cells. EVs also play crucial roles in innate and adaptive immune responses.

Emblems of health and disease

Research has shown that circulating EVs are significantly elevated in a number of diseases. EV's appear to play an important part in the development and progression of certain cancers, including pancreatic cancer. One apparent function of tumor-derived EVs, once they exit their parent cell, is to migrate to other tissues and modify their surroundings to create an environment (niche) favorable for tumor invasion and growth (metastasis). Like pioneers on a new continent, EVs can thus pave the way for cancer cells to follow in their wake.

There is also evidence that tumor-derived exosomes can help tumor cells develop drug resistance by exporting anti-tumor drugs or neutralizing antibody-based drugs.

EV's may serve as a useful means of evaluating cancer burden and response to treatment, since levels of tumor-derived EV's in patient blood samples should increase with tumor mass and decrease upon favorable response to cancer therapies, and thus offer a rapid, inexpensive and non-surgical means to examine the changes in the state of a patient's disease.

Identification of tumor-associated EV proteins, such as EphA2, and better understanding of the role of EV's in tumor development and metastasis may thus open a new chapter in cancer diagnosis and treatment monitoring. Given that pancreatic cancer cases are often characterized by high rates of therapy resistance, improved treatment monitoring is urgently needed so that personalized treatments can be quickly modified to improve individual patient outcomes. Further, better understanding of the specific factors that control EV actions to promote cancer development and metastasis may lead to the discovery of new mechanistic targets for cancer treatments that allow custom-tailored therapeutic treatments.

Ray of light

EVs have been isolated from a broad variety of cell types and biological fluids (saliva, urine, blood, breast milk, and seminal, amniotic and nasal and bronchial lavage fluids) making them highly attractive candidates for biomarker development in a variety of conditions. The critical challenge, however, has been separating disease-linked EVs from the diverse array of other EVs circulating in bodily fluids. Researchers lack simple methods for EV analysis, which generally requires time-consuming isolation and purification procedures that are not appropriate for a clinical setting. Further, biomarkers capable of accurately distinguishing tumor-derived EVs have thus far been lacking.

To address these shortcomings, the new method relies on a rapid, nanoparticle-based technique that can quickly identify tumor-derived EVs with minimal preparation.

To do this, small samples of blood (around 1 microliter, less volume than found in a single tear drop), are diluted and applied to a sensor chip coated with antibodies to an EV membrane protein. EVs bound to the chip by this antibody are then mixed with antibody-coated nanoparticles--one green nanosphere and one red nanorod--that recognize a second EV membrane protein and the pancreatic cancer marker EphA2. Only pancreatic cancer-derived EVs bind both nanoparticles, and their close contact on these EVs causes a coupling effect that changes the color and markedly increases the intensity of their refracted light, generating a signal that is easily visible when viewed with a dark field microscope, (see illustration).

In a series of experiments conducted by Dr. Hu and colleagues, this method identified blood samples from pancreatic cancer with high sensitivity, including those with early stage disease, readily distinguishing them from those of pancreatitis patients and healthy individuals. Further, this method detected alterations in EphA2-EV blood levels in pre- and post-therapy blood samples corresponding to tumor responses to therapy, demonstrating the technique's power to monitor treatment effectiveness.

Although the current study examined samples using light microscopy, the researchers envision a fully automated system capable of performing such assays in the clinic at low cost and high-throughput. Dr. Hu indicates that there is enthusiastic interest for clinical translation of this new diagnostic technology, though he notes that 2-3 years will likely be required for FDA approval.

Promising EV frontier

This approach shows promise for the detection of a broad range of diseases in which EVs may be applied as biomarkers, since it should be possible to customize it by simply replacing one or both nanoparticle probes with EV-specific probes for the disease of interest.

Dr. Hu and colleagues have already demonstrated, albeit in a study with a small number of samples, the validity of this method for detecting active tuberculosis cases. In this study, EVs derived from tuberculosis bacilli were abundantly detected in patient urine samples. These encouraging results open the door for simple, non-invasive TB testing. This is particularly important for patients who cannot produce sputum samples for standard TB tests, and may therefore be required to undergo one or more invasive procedures to obtain a sample that can be used for diagnosis.

EVs are also under study for other disease-specific applications, and the pace of such investigations continues to accelerate. Some researchers are even exploring the ability of EVs to directly serve as drug delivery or therapeutic agents. Thus potential medical applications for EVs, once disregarded as cellular debris, appear very promising.

Arizona State University

Related Cancer Articles:

Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
Cancer genomics continued: Triple negative breast cancer and cancer immunotherapy
Continuing PLOS Medicine's special issue on cancer genomics, Christos Hatzis of Yale University, New Haven, Conn., USA and colleagues describe a new subtype of triple negative breast cancer that may be more amenable to treatment than other cases of this difficult-to-treat disease.
Metabolite that promotes cancer cell transformation and colorectal cancer spread identified
Osaka University researchers revealed that the metabolite D-2-hydroxyglurate (D-2HG) promotes epithelial-mesenchymal transition of colorectal cancer cells, leading them to develop features of lower adherence to neighboring cells, increased invasiveness, and greater likelihood of metastatic spread.
UH Cancer Center researcher finds new driver of an aggressive form of brain cancer
University of Hawai'i Cancer Center researchers have identified an essential driver of tumor cell invasion in glioblastoma, the most aggressive form of brain cancer that can occur at any age.
UH Cancer Center researchers develop algorithm to find precise cancer treatments
University of Hawai'i Cancer Center researchers developed a computational algorithm to analyze 'Big Data' obtained from tumor samples to better understand and treat cancer.
New analytical technology to quantify anti-cancer drugs inside cancer cells
University of Oklahoma researchers will apply a new analytical technology that could ultimately provide a powerful tool for improved treatment of cancer patients in Oklahoma and beyond.
Radiotherapy for lung cancer patients is linked to increased risk of non-cancer deaths
Researchers have found that treating patients who have early stage non-small cell lung cancer with a type of radiotherapy called stereotactic body radiation therapy is associated with a small but increased risk of death from causes other than cancer.
Cancer expert says public health and prevention measures are key to defeating cancer
Is investment in research to develop new treatments the best approach to controlling cancer?
UI Cancer Center, Governors State to address cancer disparities in south suburbs
The University of Illinois Cancer Center and Governors State University have received a joint four-year, $1.5 million grant from the National Cancer Institute to help both institutions conduct community-based research to reduce cancer-related health disparities in Chicago's south suburbs.
Leading cancer research organizations to host international cancer immunotherapy conference
The Cancer Research Institute, the Association for Cancer Immunotherapy, the European Academy of Tumor Immunology, and the American Association for Cancer Research will join forces to sponsor the first International Cancer Immunotherapy Conference at the Sheraton New York Times Square Hotel in New York, Sept.

Related Cancer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".