A protein called PERK may be a target for treating progressive supranuclear palsy

February 06, 2017

The brain disease "progressive supranuclear palsy" (PSP) is currently incurable and its symptoms can only be eased to a very limited degree. PSP impairs eye movements, locomotion, balance control, and speech. Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the Technical University of Munich (TUM) have now discovered a molecular mechanism that may help in the search for effective treatments. Their study focusses on a protein called PERK (protein kinase RNA-like endoplasmic reticulum kinase). A team of researchers led by Prof. Günter Höglinger reports on this in the journal EMBO Molecular Medicine.

PSP belongs to a group of neurological diseases referred to as "tauopathies". In these diseases, a molecule called "tau" forms clumps rather than stabilizing the cytoskeleton as it normally does. Affected neurons can degenerate or even perish. To prevent such events, pathological molecules are normally repaired or disposed of by the organism. The protein PERK is part of such a maintenance system. However, in PSP, this mechanism appears to be defective. In previous studies, Höglinger and his colleagues had found that the risk for PSP is associated with variants at the PERK gene, and that loss of PERK function induces tau pathology in humans. For the current study, they examined the functioning of this protein more closely, to see how its effects could be positively influenced. To this end, they investigated samples of brain tissue from deceased patients, cell cultures and mice with a genetic disposition for PSP.

"We found that the disease sequelae decrease when PERK is activated with pharmaceuticals. That is to say: when its effect is enhanced," says Höglinger, who leads a research group at the DZNE's Munich site. "These results are still basic research and far from being ready for use in patients. However, our investigations show that PERK is an important part of the disease mechanism. Therefore, the protein could be a starting point for the development of new drugs."

Höglinger also sees potential for tackling diseases other than PSP. This is because PERK helps eliminate abnormal tau molecules, and these also occur in other brain diseases. "These results could have a broad relevance. Because defective tau molecules play an important role especially in Alzheimer's disease," the researcher says.
-end-
Original publication

"PERK activation mitigates tau pathology in vitro and in vivo", Julius Bruch, Hong Xu, Thomas Rösler, Anderson De Andrade, Peer-Hendrik Kuhn, Stefan Lichtenthaler, Thomas Arzberger, Konstanze Winklhofer, Ulrich Müller, Günter Höglinger, EMBO Molecular Medicine, DOI: 10.15252/emmm.201606664

DZNE - German Center for Neurodegenerative Diseases

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.