Nav: Home

Campus natural gas power plants pose no radon risks

February 06, 2017

When Penn State decided to convert its two power plants from their historic use of coal as a source of energy to natural gas, there was concern about radon emissions. Although radon is known to exist in natural gas, now Penn State research indicates that it does not escape from these two power plants in harmful amounts.

By converting the West Campus Steam Plant on the University Park Campus, Penn State reduced its greenhouse gas emissions at the plant by nearly 40 percent, but the University wanted to make sure that the conversion was not causing a significant increase of radon levels in the atmosphere. Penn State also operates a second power plant on the East end of campus near its football stadium.

A two-year study on the radon concentrations associated with burning natural gas, commissioned by Penn State's Office of the Physical Plant and conducted by University researchers, concluded that the plants posed no radon-related health risks. The results were published in the Journal of the Air & Waste Management Association.

Radon, a product of decaying uranium, is the second leading cause of lung cancer in the U.S. It is a naturally occurring radioactive gas that leaches from the Earth's crust and can concentrate in basements and other structures. Studies conducted by the U.S. Geological Survey confirmed radon's presence in natural gas, where extraction is from uranium-rich areas, such as the Marcellus Shale region.

The Penn State researchers confirmed that the natural gas utilized on campus contains an elevated concentration of radon, but the scientists could not detect elevated concentrations downwind of the two campus power plants. The reasons for that, according to Kenneth Davis, professor of atmospheric and climate science, is radon's speedy half-life of 3.8 days and the dispersion of the emissions into the atmosphere around the power plants.

"Once the radon is emitted into the atmosphere from the stacks at the power plants, it is rapidly diluted," said Davis. "Dispersion into the atmosphere is why you typically don't hear concerns about radon outside of a basement or other enclosed area. But no one had studied this issue downwind of a power plant burning a large amount of natural gas, and the University wanted to make sure that the plants weren't causing any health problems."

For the study, four sites were chosen at each of the University's two power plants. Researchers charted radon levels downwind from the plants for months, contrasting the data with upwind measurements. Radon levels also were measured in the natural gas at the power plants before combustion, and were found to be as high as 30 picocuries per liter -- about eight times the acceptable level for annual exposure.

"We measured the wind direction and applied a simple dispersion model and determined how much radon we should see downwind from what was estimated to be coming out of the power plant stack," said Davis. "The numbers were well below our detection level. The measurements also showed no evidence that radon downwind was elevated due to emissions from the power plant."

Some radon exists in the atmosphere naturally, so even though the scientists found no detectable emissions from the power plants, concentrations of radon in the atmosphere around campus were not zero. But the field measurements consistently reported radon levels far below levels considered a health threat. The research suggests that power plant combustion of natural gas is not likely to pose a health hazard unless much higher gas radon concentrations or much smaller combustion dilution ratios are encountered.

The Penn State station of the SURFRAD (Surface Radiation) Network of NOAA's Earth System Research Laboratory collected radiation data while the Department of Meteorology's weather station at the Walker Building collected the wind data.

Alison Stidworthy, a former graduate student in the Department of Meteorology, now is a site manager for the New Jersey Department of Environmental Protection, led the research effort, which was the topic of her master's degree thesis. Jeff Leavey, former radon safety officer for OPP at Penn State, also contributed to the research, which was funded by Penn State.
-end-


Penn State

Related Natural Gas Articles:

Gold-plated crystals set new standard for natural gas detectors
Materials scientists and engineers have developed a sensor that is fast, sensitive and efficient enough to detect specific wavelengths of electromagnetic energy while on the move.
Rice U. refines filters for greener natural gas
Rice University scientists map out the best materials for either carbon dioxide capture or balancing carbon capture with methane selectivity.
Unconventional: The Development of Natural Gas from the Marcellus Shale
Shale gas has changed thinking about fossil energy supplies worldwide, but the development of these resources has been controversial.
Campus natural gas power plants pose no radon risks
When Penn State decided to convert its two power plants from their historic use of coal as a source of energy to natural gas, there was concern about radon emissions.
Russian researchers developed high-pressure natural gas operating turbine-generator
Scientists of Peter the Great St. Petersburg Polytechnic University (SPbPU) developed turbo expander electric generator operating on high-pressure natural gas.
New Marcellus development boom will triple greenhouse gas emissions from PA's natural gas
Natural gas production on Pennsylvania's vast black shale deposit known as the Marcellus Shale will nearly double by 2030 to meet growing demand, tripling Pennsylvania's greenhouse gas emissions from the natural gas sector relative to 2012 levels, according to a report published today by Delaware Riverkeeper Network.
Researcher studies increased predation of sagebrush songbirds in natural gas fields
While such development has encroached on and hindered nesting habitat for three types of sagebrush-obligate birds, predation of these birds has increased because rodent populations in the vicinity of oil and gas wells have increased.
UChicago startup turns renewable energy into natural gas
One of the biggest challenges to wider adoption of wind and solar power is how to store the excess energy they often produce.
New study to characterize methane emissions from natural gas compressor stations
Colorado State University, home to some of the world's top researchers on methane emissions, will lead a Department of Energy-supported project to analyze emissions from a specific part of the natural gas supply chain: compressor stations.
Natural gas hydrate in the foraminifera
Highly saturated natural gas hydrates have been discovered in the fine-grained sediments of Shenhu area, South China Sea.

Related Natural Gas Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...