Bacterium from coal mine fire could aid drug targeting

February 06, 2017

HOUSTON -- (Feb. 6, 2017) -- Chemists scouring Appalachia for exotic microorganisms that could yield blockbuster drugs have reported a unique find from the smoldering remains of a coal mine fire that's burned for nearly a decade in southeastern Kentucky.

In new findings this week in the journal Nature Chemical Biology, a research team from Rice University, the University of Kentucky and the University of Oklahoma made new -- and in some cases more effective -- versions of the antibiotic daptomycin using an enzyme from a soil bacterium found in smoke vents of the Ruth Mullins coal fire.

"We don't know the mechanism for why it makes daptomycin work better," said Rice structural biologist George Phillips, whose team determined the three-dimensional structure of the enzyme. "It may be that it just gets into membranes better because the enzyme's specialty is adding a prenyl group, an organic molecule that typically comes into play when a molecule docks with the outer membrane of a cell. The target for the drug is associated with the membrane, so this might be the mechanism for the improvement."

The study's authors said the prenylating enzyme, which is called PriB, could prove useful to drug companies.

Study co-author Jon Thorson, director of the University of Kentucky's Center for Pharmaceutical Research and Innovation (CPRI), said, "A major focus of CPRI is the discovery of novel microbial natural products and corresponding biocatalysts that have synthetic applications. The PriB discovery represents an example of the latter and, unlike most permissive prenyltransferases that can modify simple molecules, PriB is one of the first capable of modifying highly complex drugs like daptomycin."

Thorson's center specializes in "bioprospecting," the search for new organisms like the one that yielded the prenylating enzyme, as well as the follow-up laboratory studies on the organisms to uncover and exploit new biosynthetic pathways, enzyme mechanisms, ligation chemistries and other biochemistry that could be useful for making drugs. Since the center's founding five years ago, Thorson and colleagues have isolated more than 750 microbial strains, including some that live miles below ground in coal mines. In addition, the team has isolated more than 250 corresponding microbial metabolites, more than half of which have never been previously documented.

The organism that yielded PriB is Streptomyces species "RM-5-8," where RM reflects the strain's point of origin -- the Ruth Mullins coal fire, which has burned in eastern Kentucky for almost a decade.

"Biological activities of prenylated compounds encompass virtually all fields of pharmacological sciences, hence prenylation of drugs is a novel way of creating new drug leads," said study co-author Shanteri Singh, an assistant professor at the University of Oklahoma whose research focuses on understanding and exploiting prenylating enzymes. "In addition, developing an enzymatic prenylation platform is an interesting alternative, especially for molecules such as daptomycin, which is chemically challenging to modify."

Phillips, Rice's Ralph and Dorothy Looney Professor of Biochemistry and Cell Biology and professor of chemistry, has collaborated closely with both Thorson and Singh for more than a decade. Phillips' team specializes in using X-ray crystallography to determine the precise structure of proteins like PriB.

"In the organism, the enzyme both makes prenyl groups and attaches them to the standard amino acid tryptophan," Phillips said. "This is part of a much larger metabolic pathway, but the (University of Kentucky) team isolated the gene that produces the enzyme, and they used that to create a form of E. coli that produced the enzyme in bulk."

Phillips' team crystallized the protein and determined its shape. Phillips said the enzyme has a pocket where it binds with tryptophan and attaches the prenyl group. Studies at the University of Kentucky found the enzyme readily prenylates more than a dozen other compounds and can also use "nonnative" prenyl donors that notably expand its synthetic utility. Phillips said his group is already looking for ways to modify PriB's pocket to make it even more useful in biosynthesis.

"This prenylation reaction could be broadly useful in producing drugs and other chemicals through biotechnology," Phillips said. "Because the enzyme is permissive, it is possible to think of using it to produce all sorts of drugs, including antibiotics and anti-cancer therapies."
-end-
Additional co-authors include Rice's Hongnan Cao and the University of Kentucky's Sherif Elshahawi, Khaled Shaaban, Larissa Ponomareva, Thangaiah Subramanian, Mark Farman and Peter Spielmann. The research was supported by the National Institutes of Health and the National Center for Advancing Translational Sciences.

VIDEO is available at:

https://www.youtube.com/watch?v=VglEEjMviVA

High-resolution IMAGES are available for download at:

http://news.rice.edu/files/2014/06/0630_ORGANS-phillips-web.jpg

CAPTION: George Phillips (Photo by Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/01/0206_COAL-PriB-lg-1ww0vew.jpg

CAPTION: An illustration of the PriB enzyme with a product molecule bound at the active site (center). (Image courtesy of George Phillips/Rice University)

http://news.rice.edu/files/2017/01/0206_COAL-mine-JT-lg-1vh7hvi.jpg

CAPTION: Jon Thorson (left) collecting samples in a Kentucky coal mine. (Photo by Allison Perry/University of Kentucky)

http://news.rice.edu/files/2017/01/0206_COAL-vid-smoke-lg-1sl4n97.jpg

CAPTION: A smoke vent from the Ruth Mullins coal fire in eastern Kentucky. (Photo courtesy of University of Kentucky)

The DOI of the Nature Chemical Biology paper is: 10.1038/nchembio.2285

A copy of the paper is available at: http://dx.doi.org/10.1038/nchembio.2285

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Enzyme Articles from Brightsurf:

Repairing the photosynthetic enzyme Rubisco
Researchers at the Max Planck Institute of Biochemistry decipher the molecular mechanism of Rubisco Activase

Oldest enzyme in cellular respiration isolated
Researchers from Goethe University have found what is perhaps the oldest enzyme in cellular respiration.

UQ researchers solve a 50-year-old enzyme mystery
Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

Overactive enzyme causes hereditary hypertension
After more than 40 years, several teams at the MDC and ECRC have now made a breakthrough discovery with the help of two animal models: they have proven that an altered gene encoding the enzyme PDE3A causes an inherited form of high blood pressure.

Triggered by light, a novel way to switch on an enzyme
In living cells, enzymes drive biochemical metabolic processes. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics.

A 'corset' for the enzyme structure
The structure of enzymes determines how they control vital processes such as digestion or immune response.

Could inhibiting the DPP4 enzyme help treat coronavirus?
Researchers and clinicians are scrambling to find ways to combat COVID-19, including new therapeutics and eventually a vaccine.

Bacterial enzyme could become a new target for antibiotics
Scientists discover the structure of an enzyme, found in the human gut, that breaks down a component of collagen.

Chemists create new artificial enzyme
Rajeev Prabhakar, a computational chemist at the University of Miami, and his collaborators at the University of Michigan have created a novel, synthetic, three-stranded molecule that functions just like a natural metalloenzyme, or an enzyme that contains metal ions.

First artificial enzyme created with two non-biological groups
Scientists at the University of Groningen turned a non-enzymatic protein into a new, artificial enzyme by adding two abiological catalytic components: an unnatural amino acid and a catalytic copper complex.

Read More: Enzyme News and Enzyme Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.