Radiotargeted therapy with SST2 antagonists could combat multiple human cancers

February 06, 2017

Reston, Va. - A study published in the February issue of The Journal of Nuclear Medicine demonstrates the potential of extending peptide receptor radionuclide therapy targeting the somatostatin receptor to other types of malignancies beyond neuroendocrine tumors (NETs). The theranostic pairing of Netspot (Ga-68 DOTATATE, which is FDA-approved) and Lutathera (Lu-177-DOTATATE, currently under FDA review) has already shown that it can significantly improve progression-free survival in patients with somatostatin receptor-positive NETs.

In contrast to NETs, non-NET tumors, such as breast cancers or renal cell cancers, are not routinely imaged with current somatostatin subtype 2 receptor (sst2) agonist radiotracers (which fully activate the receptor to which they bind and are subsequently internalized). This may change with sst2 antagonist tracers (which bind to the receptor but do not activate it and are not internalized). There is recent in vitro and in vivo evidence that somatostatin receptor sst2 antagonists could be even better tools to target NETs than sst2 agonists, as antagonists bind to a greater number of sst2 sites than agonists.

"The present report is the first quantitative study showing that the number of sst2 receptors that can be targeted in non-NET tumors (such as renal cell cancers or breast tumors) with a radiolabeled somatostatin antagonist can be as high as the number of somatostatin receptors being targeted in NETs with an established agonist," explains Jean Claude Reubi, MD, Institute of Pathology, University of Berne in Switzerland. "In other words, we can expect that non-NET tumors, which were not considered a routine indication for sst2 imaging using agonists, may now be targeted in vivo successfully with sst2 antagonists."

In this study, the researchers compared quantitatively iodine-125 (I-125)-JR11 sst2 antagonist binding in vitro with that of the sst2 agonist I-125-Tyr3-octreotide in a variety of cancers, including prostate, breast, colon, kidney, thyroid and lymphoid tissues. NETs were included as a reference.

The researchers report that 12 of 13 breast cancers, all 12 renal cell carcinomas, and all 5 medullary thyroid cancers demonstrated high binding of the antagonist. In contract, the agonist exhibited low binding in the majority of cases. In 15 non-Hodgkin lymphomas, many more sst2 sites were also labeled with the antagonist than with the agonist.

Other types of cancer tested were not as responsive. In 14 prostate cancers, none had sst2 binding with the agonist, and only 4 had a weak binding with the antagonist. None of 17 colon cancers show sst2 sites with the agonist and only 3 cases are weakly positive with the antagonist.

In the various tumor types, adjacent sst2-expressing tissues such as vessels, lymphocytes, nerves, mucosa or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many more sst2 sites measured with the antagonist.

Reubi points out, "The in vitro method used in the study, somatostatin receptor autoradiography, has been shown in the past two-to-three decades to be highly predictive for the in vivo application in patients. Therefore, with the tools (sst2 antagonists) and the expertise (sst2-targeting in cancer patients) available in several clinics, one can assume that these new indications (renal cell cancers, breast tumors, etc.) can be imaged in the near future in patients."

Rodney J. Hicks, MD, at the Peter MaCallum Cancer Centre in Melbourne, Australia, wrote a review of the study that is also published in the February issue of The Journal of Nuclear Medicine. He noted that the results provide further impetus for the evaluation of somatostatin receptor antagonists in a range of diseases. He stated, "Since cancers can express a range of receptors, development of additional antagonists may further expand theranostic options. For clinicians, faster diagnosis, higher accuracy and stronger evidence of therapeutic effectiveness are the goal."
-end-
Authors of the article "Highly Increased 125i-Jr11 Antagonist Binding In Vitro Reveals Novel Indications for Sst2 Targeting In Human Cancers" include Jean Claude Reubi and Beatrice Waser, University of Berne, Switzerland; Helmut Mäcke, University of Freiburg, Germany; and Jean Rivier, The Salk Institute for Biological Studies, La Jolla, California.

This study was funded in part by support from Octreopharm Sciences GmbH, Berlin, Germany.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at (703) 652-6773 or lcallahan@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 17,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine

Related Nuclear Medicine Articles from Brightsurf:

Nuclear medicine and COVID-19: New content from The Journal of Nuclear Medicine
In one of five new COVID-19-related articles and commentaries published in the June issue of The Journal of Nuclear Medicine, Johnese Spisso discusses how the UCLA Hospital System has dealt with the pandemic.

Story tips: Shuffling atoms, thinning forests, fusion assembly and nuclear medicine
ORNL Story Tips: Shuffling atoms, thinning forests, fusion assembly and nuclear medicine.

Global nuclear medicine community shares COVID-19 strategies and experiences
In an effort to provide safer working environments for nuclear medicine professionals and their patients, clinics across five continents have shared their approaches to containing the spread of COVID-19 in a series of editorials, published ahead of print in The Journal of Nuclear Medicine.

Influence of the Journal of Nuclear Medicine jumps 25%
The Journal of Nuclear Medicine again ranks among the top 5 medical imaging journals in the world.

Nuclear medicine PSMA-targeted study offers new options for cancer theranostics worldwide
Research presented at the 2019 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI) describes a new class of radiopharmaceuticals, named radiohybrids (rh), that offer a fresh perspective on cancer imaging and radioligand therapy (theranostics).

Nuclear medicine imaging monitors effectiveness of therapy for melanoma patients
Nuclear medicine imaging with PET/CT can monitor the effectiveness of immunotherapy treatment for metastatic melanoma and predict outcome.

Prostate cancer radiotherapy more precisely targeted with nuclear medicine imaging
A nuclear medicine imaging procedure can pinpoint prostate cancer with superior accuracy, allowing more precisely targeted treatment, according to new research featured in the November 2018 issue of The Journal of Nuclear Medicine.

New nuclear medicine tracer will help study the aging brain
A new PET imaging radiotracer could help researchers understand neurodegenerative disease and the aging brain.

New nuclear medicine imaging method shows strong potential for cancer imaging
A new nuclear medicine imaging method could help diagnose widespread tumors, such as breast, colon, pancreas, lung and head and neck cancer better than current methods, with less inconvenience to patients and with equal or improved accuracy.

New nuclear medicine technique could help tackle brain disease
A new molecular imaging method can monitor the success of gene therapy in all areas of the brain, potentially allowing physicians to more effectively tackle brain conditions such as Parkinson's disease, Alzheimer's disease and multiple sclerosis.

Read More: Nuclear Medicine News and Nuclear Medicine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.