Nav: Home

Low-cost imaging system detects natural gas leaks in real time

February 06, 2017

WASHINGTON -- Researchers have developed an infrared imaging system that could one day offer low-cost, real-time detection of methane gas leaks in pipelines and at oil and gas facilities. Leaks of methane, the primary component of natural gas, can be costly and dangerous while also contributing to climate change as a greenhouse gas.

"Despite methane gas being invisible to the eye, we have developed a method of color-coding this gas information and overlaying it onto a conventional camera image," said Dr. Graham M. Gibson from the University of Glasgow, Scotland, who led the technical work. "This allows the user operating the camera to look around, identify things and see an overlay of where the gas is present."

Gibson, along with the rest of the research team, worked with M Squared to develop the real-time infrared imaging system. In The Optical Society journal Optics Express, the researchers show that the system can acquire videos of methane gas leaking from a tube at about 0.2 liters per minute. The technology could also be expanded to other wavelengths or ranges of wavelengths, allowing the detection of a host of gases and chemicals.

Dr. Graeme Malcolm OBE, CEO and Co-Founder of M Squared, said:

"One of the challenges from a commercial point of view has been translating infrared technology to bigger markets where price points are sensitive. This new technology could allow infrared imaging and sensing to become more readily available and help improve the environment by reducing gas losses in the oil and gas industry."

Combining technologies

Although commercial systems that use imaging to detect methane gas are available, they are very expensive and don't work well under all environmental conditions. The new imaging system could offer a less inexpensive and sensitive way to detect methane gas in a variety of conditions. It incorporates active hyperspectral imaging technology developed by M Squared and a single-pixel camera developed by the Glasgow research team.

The system performs hyperspectral imaging by projecting a series of infrared light patterns onto the scene using a laser wavelength that is absorbed by methane. These patterns are created with a laser and tiny device with hundreds of thousands of moving mirrors, known as a digital micromirror device. An image showing where methane has absorbed the light is reconstructed by detecting the light that scatters off the scene and computationally comparing it to the original projected patterns.

The fact that the new methane gas imaging system uses active illumination -- meaning it provides its own light source -- comes with several advantages compared to the passive illumination systems used in currently available gas detectors, including systems that detect gas using temperature differences.

Dr. Nils Hempler, Head of Innovation at M Squared, said:

"For systems using passive illumination, darkness or rain will cause the signal reaching the imaging system to vary or be non-existent. An active illumination source is independent of environmental changes, including changes in temperature or light, and provides enhanced contrast and higher sensitivities."

The researchers used a single-pixel camera to measure the light scattered from the scene because traditional cameras with millions of pixels are either unavailable or prohibitively inexpensive in the infrared wavelengths. The single-pixel camera is key to creating a commercial methane gas imaging system that might cost only a few thousand dollars, significantly less than today's commercially available gas detection imagers. Since the system doesn't use any scanners or other moving parts, it could be easily turned into a portable instrument.

In the paper, the researchers showed that their system could image methane gas leaking from a tube about 1 meter from the camera with a video-rate imaging speed of approximately 25 frames per second. They also demonstrated that their method was sensitive to methane even when other gases were present between the camera and methane.

"One of the things that we found is that we don't necessarily need high-resolution images when detecting gas leaks," said Gibson. "A relatively fast frame rate on your camera provides more information about where the gas is leaking from than having very high-resolution images."

Moving out of the lab

One of the next steps for the researchers is to demonstrate their imaging setup outside the controlled laboratory setting to see how it performs in real-world scenarios. They also want to try the approach with more powerful lasers, which might allow imaging from a greater distance and increase the sensitivity of the gas detection.

"Using broadly tunable laser sources rather than the fixed wavelength source used in this paper can extend this method to detection of other hydrocarbons, threat materials such as chemical warfare agents and explosives, and other biologically important substances used in healthcare and diagnostics," said Hempler.
-end-
Paper: G.M. Gibson, B. Sun, M.P. Edgar, D.B. Phillips, N. Hempler, G.T. Maker, G.P. Malcolm, M.J. Padgett, "Real-time imaging of methane gas leaks using a single-pixel camera," Opt. Express, Vol. 25, Issue 4, 2998-3005 (2017). DOI: 10.1364/OE.25.002998.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by The Optical Society and edited by Andrew M. Weiner of Purdue University. Optics Express is an open-access journal and is available at no cost to readers online at: OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
1-202-416-1443

Joshua Miller
The Optical Society
jmiller@osa.org
1-202-416-1435

The Optical Society

Related Climate Change Articles:

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...