Severe newborn jaundice could be preventable, mouse study shows

February 06, 2017

For many newborn babies, an enzyme that breaks down the molecule bilirubin doesn't activate right away. The resulting bilirubin buildup can lead to jaundice, a typically harmless condition that causes a baby's skin to temporarily appear yellow. In some cases, however, bilirubin can accumulate to toxic levels in the brain. Researchers at University of California San Diego School of Medicine have identified a protein that inhibits the bilirubin-breakdown enzyme. Methods that block this inhibitor, and thus restore the enzyme's activity, could provide a new therapeutic approach for preventing or treating severe jaundice.

The study is published February 6 by the Proceedings of the National Academy of Sciences.

"This is the first report that describes the molecular processes that dictate the onset and control of the most medically worrisome form of jaundice in newborns, a condition known as severe neonatal hyperbilirubinemia," said study co-author Robert Tukey, PhD, professor of pharmacology at UC San Diego School of Medicine. "This new information will help us look for drugs or dietary therapeutics that alleviate the early onset of bilirubin toxicity."

At birth, newborns are suddenly exposed to unprecedented levels of oxygen, resulting in the rapid but temporary destruction of red blood cells and spillage of excess bilirubin in the bloodstream. If not properly broken down by an enzyme called UDP-glucuronosyltransferase 1A1 (UGT1A1), bilirubin continues to accumulate. High bilirubin levels in the brain can lead to encephalopathy, seizures, life-long brain damage and even death.

To better understand UGT1A1's role in human newborns, Tukey's collaborator and senior author Shujuan Chen, PhD, assistant professor of pharmacology at UC San Diego School of Medicine, replaced the native UGT1A1 gene in mice with the human version of the gene. While normal mice don't develop jaundice at birth, the researchers found that "humanized" mice developed severe neonatal hyperbilirubinemia and some of the resulting health consequences.

Tukey, Chen and team also discovered that the UGT1A1 gene is turned off in liver tissue in newborn humanized mice, as in humans, but also repressed in the gastrointestinal tract. They eventually identified the cause of UGT1A1's inhibition in humanized newborn mice -- a repressor protein called nuclear corepressor protein 1 (NCoR1).

When the researchers deleted the NCoR1 gene from the mice's intestinal tissue, the UGT1A1 gene was activated. Newly restored UGT1A1 broke down the excess bilirubin, eliminating signs of severe neonatal hyperbilirubinemia in the humanized mice.

"Since we now know that intestinal tissue is at least partly responsible for regulating bilirubin toxicity, we're hopeful that oral therapeutics could be developed to block the onset of severe neonatal hyperbilirubinemia," said Chen.

In countries with adequate health care systems, severe neonatal hyperbilirubinemia can be managed with phototherapy and blood transfusions. However, in many parts of the world, such as sub-Saharan Africa, South Asia and other places where preterm births are on the rise, rapid bilirubin rise often goes untreated. Each year, more than 1 million newborns worldwide experience severe neonatal hyperbilirubinemia.
-end-
Study co-authors include: Wenqi Lu, Mei-Fei Yueh, Eva Rettenmeier, Miao Liu, Kepeng Wang, Michael Karin, UC San Diego; Johan Auwerx, Ecole Polytechnique Fédérale de Lausanne; Ruth T. Yu, and Ronald M. Evans, Howard Hughes Medical Institute and Salk Institute for Biological Studies.

University of California - San Diego

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.