Nav: Home

Study shows planet's atmospheric oxygen rose through glaciers

February 06, 2017

A University of Wyoming researcher contributed to a paper that determined a "Snowball Earth" event actually took place 100 million years earlier than previously projected, and a rise in the planet's oxidation resulted from a number of different continents -- including what is now Wyoming -- that were once connected.

"Isotopic dating of the Ongeluk large igneous province, South Africa, revealed that the first Paleoproterozoic global glaciation and the first significant step change in atmospheric oxygenation likely occurred between 2,460 and 2,426 million years ago, approximately 100 million years earlier than previous estimates," says Kevin Chamberlain, a UW research professor in the Department of Geology and Geophysics. "And the rise of atmospheric oxygen was not monotonic but, instead, was characterized by significant oscillations before irreversible oxygenation of the atmosphere 2,250 million years ago."

Chamberlain is the second author of a paper, titled "Timing and Tempo of the Great Oxidation Event," which appears in the Feb. 6 (today's) issue of the Proceedings of the National Academy of Sciences (PNAS). The journal is one of the world's most prestigious multidisciplinary scientific serials, with coverage spanning the biological, physical and social sciences.

Ashley Gumsley, a doctoral student at Lund University in Lund, Sweden, is the paper's lead author. Other contributors were from the Geological Survey of Canada in Ottawa; Swedish Museum of Natural History; University of Johannesburg, South Africa; and the University of California-Riverside.

The research relates to a period in Earth's history about 2.45 billion years ago, when climate swung so extremely that the polar ice caps extended to the equator and the Earth was a snowball, and the atmosphere was largely isolated from the hydrosphere, Chamberlain says. Recovery from this Snowball Earth led to the first and largest, rapid rise in oxygen content in the atmosphere, known as the Great Oxygenation Event (GOE), setting the stage for the dominance of aerobic life, he says.

A later, and better known, Snowball Earth period occurred at about 700 million years ago, and led to multicellular life in the Cambrian period, Chamberlain says. The events show there was not one event, but an oscillation of oxygen over time that led to the Earth's conditions today.

"So, both Snowball Earth periods had extreme impacts on the development of life," he says. "It helps us understand the evolution of Earth and Earth's atmosphere, and evolution of life, for that matter."

Chamberlain's contribution focuses on igneous rocks exposed in South Africa that record the existence of equatorial glaciers and contain chemical indicators for the rise of atmospheric oxygen. Chamberlain's in situ method to determine the age of the rocks does not require removing baddeleyite crystals from the rock. This process allows for analysis of key samples with smaller crystals than previously allowed. Using a mass spectrometer, the age of the rocks is determined by measuring the buildup of lead from the radioactive decay of uranium, he says.

"The basic story had been worked out earlier by others, but our results have significantly refined the timing and duration of the 'event,' which is more of a transition actually," Chamberlain explains. "With all the discussion of climate change in the present day, understanding how Earth responded and the effects on the atmosphere in the past may help us predict the future."

Chamberlain points to a Wyoming connection in this research. From paleomagnetic data, many of the continents, at the time, including the basement rocks of Wyoming, were all connected into a single, large continent and situated near the equator. Other continents connected included parts of what are now Canada and South Africa. This situation is part of the trigger for the "Snowball Earth" conditions.

"There are glacial deposits exposed in the Medicine Bow Mountains and Sierra Madre that are from this same event," he says.

These rocks, known as diamictites, have large drop stones that depress very fine-grained mudstone. The large stones dropped from the underside of glacial sheets as they spread out and melted over shallow seas, similar to sediments beneath the Ross sea ice sheet of Antarctica today.

"The fact that these sediments were at the equator at 2.45 billion years ago comes from the paleomagnetic data from associated igneous rocks," Chamberlain says.
-end-


University of Wyoming

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.