UTSW identifies ion channel necessary for hormone and anti-obesity drug to suppress eating

February 06, 2017

DALLAS - Feb. 6, 2017 - UT Southwestern Medical Center researchers have identified an ion channel required for brain cells to suppress eating behavior in response to the hormone leptin or to the anti-obesity drug lorcaserin.

Ion channels are tunnel-shaped passageways on the surface of neurons through which charged particles, or ions, can travel in and out of the cell.

A deeper understanding of this brain-metabolism relationship could someday lead to new, better targeted treatments for obesity or diabetes, said lead author Dr. Kevin Williams, Assistant Professor of Internal Medicine at UT Southwestern and senior author of the study, published recently in Cell Reports.

"We found that an ion channel made up of TrpC5 (transient receptor potential cation 5) protein subunits is required for the proper regulation of basal metabolism and body weight," Dr. Williams said.

In the mouse study, loss of TrpC5 caused types of nerve cells in the brain called Pomc neurons to become unresponsive to leptin or lorcaserin, resulting in increased body weight over time. The normally beneficial effect of lorcaserin on blood-sugar levels was also lost in mice deficient for TrpC5, the study showed.

"As researchers, we are trying to understand the cellular and molecular mechanisms that contribute to changes in body weight and blood-sugar balance. There is a possibility that this ion channel may someday be directly targeted for therapeutic regulation of eating and blood-sugar balance," Dr. Williams said.

Leptin and lorcaserin exert their effects on eating and other aspects of metabolism by binding to different types of receptors that sit on the surface of Pomc neurons in the hypothalamus, the part of the brain that helps govern metabolism and other involuntary bodily functions such as breathing and sleeping. The ion channels, formed when TrpC proteins gather together to form a channel, or tube-like structure, are also on the surface of Pomc neurons.

Although leptin and lorcaserin bind to different receptors, binding is ineffective unless nearby TrpC5 ion channels are opened to allow the passage of ions in and out of the cell.

The researchers conducted experiments comparing normal mice and mice genetically unable to make TrpC5. Energy balance, eating behavior, and activity levels were measured. The researchers found that a lack of TrpC5 in Pomc neurons was enough to block the usual appetite-suppressing effects of leptin and lorcaserin. Lack of TrpC5 also seemed to blunt the cell's electrophysiological response to leptin and lorcaserin.

The research helps explain some intriguing observations previously made by researchers at UT Southwestern and elsewhere. Studying the seven proteins in the TrpC family, earlier studies determined that TrpC1, TrpC4, and TrpC5 (and to a lesser extent TrpC6 and TrpC7) were detected in Pomc neurons. Although it was known that these TrpC family members could form ion channels, the effects or relative importance of TrpC5 proteins in particular to regulate metabolism were unknown, Dr. Williams said. Moreover, the molecular mechanisms underlying appetite suppression in response to activation of receptors for leptin or lorcaserin were unclear, he added.

"Our results link TrpC5 subunits in the brain with leptin- and lorcaserin-dependent changes in nerve activity as well as energy balance, eating behavior, and blood-sugar levels," Dr. Williams said.
-end-
Lead authors of the study from UT Southwestern's Division of Hypothalamic Research were former postdoctoral fellow Dr. Jong-Woo Sohn and current or former visiting graduate students Yong Gao, Ting Yao, and Zhuo Deng. Instructor of Internal Medicine Dr. Tiemin Liu and visiting researchers Dr. Jia Sun and Dr. Yiru Huang also contributed to the work, as did researchers from Harvard University; the University of Texas Medical Branch in Galveston, Texas; and several institutions in China.

This study was supported by the National Institutes of Health, the China Scholarship Council, the National Research Foundation of Korea, the Korean Ministry of Health and Welfare, and the National Natural Science Foundation of China.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty includes many distinguished members, including six who have been awarded Nobel Prizes since 1985. The faculty of almost 2,800 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide medical care in about 80 specialties to more than 100,000 hospitalized patients and oversee approximately 2.2 million outpatient visits a year.

This news release is available on our website at http://www.utsouthwestern.edu/news

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.