Nav: Home

Evolutionary biology: Sponges can economize on oxygen use

February 06, 2018

Sponges lack a signaling pathway that responds to low intracellular oxygen levels in more complex animals. Do they use a different mechanism for this purpose or did their earliest ancestors evolve at a time when less oxygen was available?

Gert Wörheide holds the Chair of Paleontology and Geobiology at the Department of Earth and Environmental Sciences at Ludwig-Maximilians-Universitaet (LMU) in Munich, and his research focuses on the early evolution of animals, which happened more than 650 million years ago. He and his colleagues recently demonstrated that the sponges (Porifera), and not the comb jellies (Ctenophora) as some believe, most likely are the sister group to all other animal phyla. In other words, modern sponges are derived from the lineage that first diverged from the last common ancestor of all animals, while all other animal groups emerged from the other branch of the family tree. In their latest study, carried out in collaboration with Professor Donald Canfield's group at the University of Southern Denmark in Odense, Wörheide and his team have now shown that sponges can make do with far less oxygen than most other animals. Moreover, the new work, which appears in the international leading life and biomedical sciences journal eLife, reveals that sponges lack the specific biochemical signaling pathway that other animals use to sense the level of the gas present in their cells and tissues.

The vast majority of modern-day animals are dependent on an adequate supply of oxygen for their survival, and they possess a dedicated molecular system that enables them to make the appropriate physiological adjustments when oxygen levels fall below a certain threshold. This so-called "HIF" signaling pathway is named after the 'hypoxia-inducible factor', the protein that serves as the oxygen sensor in the system. However, it was not clear whether or not all contemporary animal lineages have the genes that code for the various protein components of the HIF pathway.

The study grew out of experiments performed in Wörheide's laboratory, in which the team reared specimens of the marine sponge Tethya wilhelma under controlled conditions in aquaria. When the researchers varied the amount of dissolved oxygen available, they found that this species continued to thrive in waters that contained only 0.25% of the present saturation level in Earth's atmosphere. "This result was very surprising," Wörheide says, and it immediately prompted the team to ask how the sponges manage to survive on such a small amount of the vital gas. Subsequent molecular genetic investigations on a wider range of sponges, together with several ctenophoran species, demonstrated that these two lineages lack several essential components of the canonical HIF signaling pathway.

This raises the question of whether or not sponges have evolved the capacity to cope with a relative dearth of the gas in their marine habitats, or have evolved an alternative mechanism for detecting and responding to low levels of oxygen. The answer has considerable implications for the understanding of the evolutionary history of animal life on our planet. It is thought that when the first animals emerged in the Precambrian, the level of oxygen present in the atmosphere was on the order of one-tenth of its current concentration. "But nobody knows precisely what the conditions were like on Earth during that time. However, neither the sponges nor the comb jellies - both most likely the sister groups of all other animals - possess the ability to perceive, and react appropriately to, the level of oxygen in their environment by means of the HIF pathway, as other animals do. And since sponges - as the experiments showed - are able to survive in the presence of very low levels of oxygen, it is tempting to conclude that the last common ancestor of animals evolved and lived in a very oxygen-poor environment," Wörheide concludes.
-end-


Ludwig-Maximilians-Universität München

Related Signaling Pathway Articles:

Mouse study shows nerve signaling pathway critical to healing fractures
Sticks and stones may break one's bones, but healing them requires the production of a protein signal that stimulates the generation, growth and spread of vital nerve cells, or neurons, throughout the injured area.
A common insulin signaling pathway across cancer and diabetes
An oncology researcher has made an unexpected contribution to the understanding of type 2 diabetes.
Insects share the same signaling pathway to form their 3-dimensional body
Zoologist shows that beetles, bugs and crickets control their body shape through Fog signalling / publication in 'eLife'.
A new signaling pathway for mTor-dependent cell growth
A team led by the scientist Volker Haucke (Leibniz - Forschungsinstitut für Molekulare Pharmakologie and Freie Universität Berlin) has now discovered how inactivation of a certain lipid kinase promotes mTor complex 1 activity, and may therefore constitute a new point of attack for the treatment of diabetes and cancer.
Chemical probe can regulate signaling pathway and block cell invasion by arboviruses
Dysregulation of the signaling pathway known as the beta-catenin-dependent Wnt can also cause embryo malformation and contribute for the development of breast and cervical cancer.
Important signaling pathway in breast cancer revealed
Researchers at Kanazawa University report in Proceedings of the National Academy of Sciences of the United States of America (PNAS) that a particular signaling pathway in breast-cancer tumors causes cancer cells to divide symmetrically, expanding the tumor.
Colon signaling pathway key to inflammatory bowel disease
Inflammatory bowel disease (IBD) develops because of an uncontrolled immune response in the colon.
Signaling pathways to the nucleus
Researchers have demonstrated how auxin, a hormone that controls many processes in plants, reaches its destination.
Signaling pathway involving the Golgi apparatus identified in cells with Huntington's disease
Working with cells grown in the lab, Johns Hopkins researchers have identified a biochemical pathway that allows a structure within cells, called the Golgi apparatus, to combat stress caused by free radicals and oxidants.
Chinese scientists reveal a novel signaling pathway for chilling tolerance in rice
The research team guided by Prof. CHONG Kang from Institute of Botany of the Chinese Academy of Sciences reveals new mechanism of chilling tolerance mediated by OsMAPK3-OsbHLH002-OsTPP1 in rice.
More Signaling Pathway News and Signaling Pathway Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.