Nav: Home

Ebola virus exploits host enzyme for efficient entry to target cells

February 06, 2018

Researchers have identified a key process that enables the Ebola virus to infect host cells, providing a novel target for developing antiviral drugs.

The deadly Ebola virus incorporates a cellular enzyme into its virus particles, facilitating the infection to the target cells, according to new research published in the journal PLOS Pathogens.

When this enzyme Xkr8 is activated, it flips a phospholipid called phosphatidylserine (PS) from the inner layer of the Ebola virus' membrane (envelope) to the outer layer. The exposed PS facilitates entry of the virus.

The researchers at Hokkaido University and The University of Tokyo generated ebolavirus-like particles by expressing viral proteins in cultured mammalian cells to investigate mechanisms by which Ebola virus enters target cells. When the researchers disabled or blocked the activation of Xkr8, the exposure of PS on the surface of the virus particles was reduced.

First appearing in Sudan and the Democratic Republic of Congo in 1976, Ebola has instilled fear wherever infections have emerged due to its high fatality rate ranging from 25% to 90%. Most recently, west Africa experienced a record-breaking outbreak in 2014-2016. The virus spreads via the bodily fluids of infected animals and humans. Currently, there are no approved drugs for treating Ebola. Scientists are beginning to unravel how the virus works, which is critical for developing effective treatments.

In Ebola virus-infected cells, the virus' components replicate and assemble to generate progeny viruses. The progeny viruses bud from the surface of host cells, acquiring an envelope derived from the host's cell surface membrane.

The team from Hokkaido University and elsewhere have demonstrated that the Ebola virus enters the target cells through the interaction between glycoprotein (GP) on the virus' surface and its receptor on the cell surface. In addition to GP, PS in virus envelope has been shown to help entry of the Ebola virus. To be recognized by the target cells, PS needs to be present on the surface of the virus particles. However, PS is typically found on the inner side of host cell membranes and it has been unknown how PS changes its location in the virus envelope.

The researchers have found that Xkr8 is transported to the budding site along with GP, and incorporated into the envelope. Xkr8 is then activated, which leads to exposure of PS on its surface so the virus can enter the target cells.

Associate Professor Asuka Nanbo of the research team at Hokkaido University says, "PS is known to function in the entry process of various pathogenic viruses. So, we expect this pathway provides a potential target for developing new drugs against those viruses as well as the Ebola virus."
-end-


Hokkaido University

Related Ebola Articles:

Ebola survivors have a 'unique' retinal scar
Researchers from the University of Liverpool have conducted a study of Ebola survivors to determine if the virus has any specific effects on the back on the eye using an ultra widefield retinal camera.
Ebola: Lives to be saved with new management approach
Ebola outbreaks are set to be managed quickly and efficiently -- saving lives -- with a new approach developed by an international team of researchers, including the University of Warwick, which helps to streamline outbreak decision-making.
Ebola vaccines provide immune responses after 1 year
Immune responses to Ebola vaccines at one year after vaccination are examined in a new study appearing in the March 14 issue of JAMA.
New scoring system predicts Ebola severity
While Ebola virus disease (EVD) is notorious for being one of the world's most deadly infections, it actually has a wide range of outcomes, where asymptomatic presentation may be as common as fatality.
Could co-infection with other viruses affect the survival of those with Ebola virus?
Could co-infection with other viruses have a detrimental affect on Ebola survival, and why did some show Ebola symptoms without having the virus?
Antimalarial being tested as possible Ebola virus drug
The National Center for Advancing Translational Sciences (NCATS) recently awarded $596,533.00 to Collaborations Pharmaceuticals, Inc.
Ebola map may help prepare for future outbreaks
To be prepared for new Ebola virus disease cases, it is fundamental to start by identifying the range of the virus and the regions that are more favorable for its propagation.
Sexual transmission of Ebola likely to impact course of outbreaks
Sexual transmission of the Ebola virus could have a major impact on the dynamics of the disease, potentially reigniting an outbreak that has been contained by public health interventions, according to research by University of Georgia ecologists just published in the Royal Society journal Biology Letters.
Ebola vaccine: Promising phase I trials
The clinical phase I trial of a potential vaccine against the dreaded Ebola virus has been successfully completed at four partner sites in Africa and Europe.
Improving treatments for post-Ebola syndrome sufferers
Researchers from the University of Liverpool and the King's Sierra Leone Partnership are to present new findings into post-Ebola syndrome at a major European conference this week.

Related Ebola Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.