Nav: Home

Active genetics technology opens new horizons

February 06, 2018

In 2015, University of California San Diego biologists Ethan Bier and Valentino Gantz developed a breakthrough technology known as "active genetics," which results in parents transmitting a genetic trait to most of their offspring (instead of 50 percent receiving the trait under standard inheritance). Immediate targets of active genetics included gene-drive systems for immunizing mosquitoes against vector borne diseases such as malaria. Bier and Gantz also proposed using active genetics for a variety of other potential human health and agricultural benefits.

Now, Shannon Xu, together with Gantz and Bier, employ CRISPR/Cas9 to edit gene regulatory elements in their native genomic environments, revealing new fundamental mechanisms that control gene activity, as described Feb. 6 in eLife. The authors also provide experimental validation for using active genetics as an efficient means for targeted gene insertion, or "transgenesis," and single-step replacement of genetic control elements.

"Technical advances enabled by active genetics represent an innovative toolkit to engineer organisms with novel features, thereby enabling a new era of advances in synthetic biology," said Gantz.

The researchers analyzed the genetic control of a gene responsible for coordinating the formation of a simple structure in fruit flies--a wing vein--during its development. The goal of the analysis was to understand mechanisms controlling gene activity in space and time, resulting in a wing vein being reliably placed in its correct position and investigating how this genetic circuit evolved in different species.

Among their findings, the researchers provided evidence for a new potential form of interaction between chromosomes that contributes to the control of gene activity. These observations raise the intriguing possibility that similar forms of cross-talk between chromosomes may occur in other organisms and might eventually define potential targets for epigenetic intervention. They also demonstrated significant advantages of editing gene regulatory sequences in their native location to uncover new functionalities that could lead to a better understanding of how control switches work to turn genes on and off in the body. Perhaps most importantly, these studies demonstrate the general utility of active genetics as a platform for engineering new organisms with novel traits.

"These advances should encourage other researchers to employ active genetics in a broad range of organisms to enable and accelerate their research," said Xu.

"This knowledge may eventually lead to biological design based on first principles. That is, acquiring the knowledge to engineer organisms with specifically designed novel features," said Bier, professor and recently named holder of the Tata Chancellor's Endowed Professorship in Cell and Developmental Biology.

The researchers also examined active genetics as a next-generation tool for transgenesis. So-called "CopyCat" cloning vectors offer the potential to be inserted precisely into the genome at any desired location and then get copied with high efficiency from one parental chromosome to another so that all offspring inherit the CopyCat element. CopyCat cloning, the researchers say, has "the potential to greatly accelerate the assembly of complex genetic strains of animals or plants."

"Such genetic engineering manipulations should open new avenues of research and animal and plant engineering that are out of reach using current technologies," the researchers note. These innovative new areas of biological research are in line with the goals of the Paul G. Allen Frontiers Group, which named professor Bier an Allen Distinguished Investigators in 2016.

Active genetics is also the technology driving the new Tata Institute for Genetics and Society. Based at UC San Diego and India's Institute for Stem Biology and Regenerative Medicine, the institute was launched with a mission to advance global science and technology through socially conscious means and develop solutions to some of the world's most pressing challenges, from public health to agriculture.
-end-
Natalia Siomava of the Georg-August-Universität Göttingen in Germany also coauthored the paper.

University of California - San Diego

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".