Nav: Home

Serious shortcomings in aging tests of new solar cell materials

February 06, 2018

Researchers at Aalto University have found that only a fraction of stability tests done on new types of solar cells meet proper requirements. Tests lack common standards and should have been done in real-world conditions and in groups of several cells.

Perovskite and dye-sensitized solar cells have been suggested as energy efficient and cost-effective challengers to silicon solar cells currently on the market. So far, the development of challenger cells has focused mainly on studying and improving their efficiency. In order for the cells to become commercially viable, however, the cells need to have a sufficient life-span, not only be efficient.

Researchers at Aalto University have analysed 261 ageing tests conducted on perovskite and dye-sensitised solar cells. Major shortcomings were discovered in both how the results had been reported and how tests had been implemented.

'In about half of the ageing studies, the data was published only for one solar cell. Studying only one cell does not yield a sufficient amount of data to reliably compare how different materials age, that is, lose efficiency over time,' says Doctoral Student Armi Tiihonen.

The researchers also found other deficiencies in the stability studies. Only a third of tests reported the intensities of visible and UV light, the humidity and temperature. Most of the tests - 52 per cent - did not mention the intensity of the UV light. UV light is a significant stress factor for most types of solar cells, shortening the cells' lifetimes more than pure visible light.

About half of the ageing tests had been performed solely in dark conditions. Only 15 tests had been conducted outdoors and three tests were made using modules comprising several cells connected together. This goes against the principle of testing the cells in conditions in which they will be used, which is a requirement for commercialisation.

Research field requires more courage and closer cooperation

The inadequately reported test conditions reduce the reliability of the results and slow down the development of the new solar cell technologies. Aalto researchers hope that a more daring approach could be found in the field so that tests on ageing could also be implemented in actual conditions in which the cells will also be used in energy production.

'The field needs common standards. High-quality, well-reported, and standardised tests would reinforce the confidence of industry and investors in the technologies,' says Docent Kati Miettunen who directed the work.

The researchers have written a detailed checklist for doing high-quality aging tests and how to take testing conditions into consideration and how to select the measurements to be carried out during testing.

'It would be important to assess already in advance how many cells are needed for a statistically valid result,' says Tiihonen.

The team also proposes organising a series of conferences for establishing common guidelines and standards for ageing tests. It will require close cooperation with other players in the field. For instance, in silicon cell research, the standards have been set by commercial entities, whereas the standards for new organic solar cells made out of materials such as conductive polymers are efforts of research groups.

'Our research is also an open invitation for discussion. We hope that cooperation among the international research community will increase in future,' Tiihonen adds.
-end-
In addition to Armi Tiihonen and Kati Miettunen, members of the research group include Janne Halme, Sakari Lepikko, Aapo Poskela and Peter Lund. The article is published in Energy & Environmental Science, the most respected journal in the field of energy.

Further information:

Armi Tiihonen
Doctoral Student
Aalto University
armi.tiihonen@aalto.fi
tel. +358 50 4683431

Kati Miettunen
Docent
Aalto University
kati.miettunen@aalto.fi
tel. +358 50 3441729

Article: Critical analysis on the quality of stability studies of perovskite and dye solar cells http://pubs.rsc.org/en/Content/ArticleLanding/2018/EE/C7EE02670F#!divAbstract

Aalto University

Related Solar Cells Articles:

Solar cells with new interfaces
Scientists from NUST MISIS (Russia) and University of Rome Tor Vergata found out that a microscopic quantity of two-dimensional titanium carbide called MXene significantly improves collection of electrical charges in a perovskite solar cell, increasing the final efficiency above 20%.
Welcome indoors, solar cells
Swedish and Chinese scientists have developed organic solar cells optimised to convert ambient indoor light to electricity.
Mapping the energetic landscape of solar cells
A new spectroscopic method now makes it possible to measure and visualize the energetic landscape inside solar cells based on organic materials.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
A good first step toward nontoxic solar cells
A team of engineers at Washington University in St. Louis has found what they believe is a more stable, less toxic semiconductor for solar applications, using a novel double mineral discovered through data analytics and quantum-mechanical calculations.
Organic solar cells will last 10 years in space
Scientists from the Skoltech Center for Energy Science and Technology, the Institute for Problems of Chemical Physics of RAS, and the Department of Chemistry of MSU presented solar cells based on conjugated polymers and fullerene derivatives, that demonstrated record-high radiation stability and withstand gamma radiation of >6,000 Gy raising hopes for their stable operation on the near-earth orbit during 10 years or even longer.
Next-gen solar cells spin in new direction
A nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells.
Caffeine gives solar cells an energy boost
Scientists from the University of California, Los Angeles (UCLA) and Solargiga Energy in China have discovered that caffeine can help make a promising alternative to traditional solar cells more efficient at converting light to electricity.
New properties of perovskite solar cells
Perovskite solar cells are lighter and cheaper than silicon, their production is non-toxic.
Making solar cells is like buttering bread
Formamidinium lead iodide is a very good material for photovoltaic cells, but getting the correct and stable crystal structure is a challenge.
More Solar Cells News and Solar Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.