A new role for the 'pigments of life'

February 06, 2018

Scientists have just discovered how to reconfigure porphyrins -- the "pigments of life" -- which they have long had in their minds as potentially useful players in the fields of cancer therapy, solar energy, and materials science.

In nature, porphyrins are responsible for the green colour of leaves and the red colour of blood. All their functionality is based along the same core chemical structure: four smaller rings connected to one larger ring, with a little cavity in the centre. Most of their functions in nature (photosynthesis, oxygen transport) arise when they host different guest metals (magnesium, iron, cobalt, nickel) in the centre of the molecule. Different metals spark different functions in these 'metalloporphyrins'.

The discovery made by a five-strong research team was that by overcrowding the large porphyrin ring, they could force it to turn 'inside out' and change into the shape of a saddle. Importantly, this little trick enabled them to exploit the special properties of the formerly inaccessible core.

The team was led by Principal Investigator at the Trinity Biomedical Sciences Institute, and Chair of Organic Chemistry at Trinity College Dublin, Professor Mathias O. Senge. In close cooperation with Professor Stephen Connon, an expert in the field of organocatalysis, the scientists established standard reaction conditions and published their work in leading international journal Chemical Communications, which features the study on the front cover.

Professor Matthias O. Senge said: "By bending the porphyrin core out of plane, we hypothesised that we would be able to make use of the formerly buried functionalities by using the porphyrin as a catalyst."

"A catalyst is a compound that attracts other molecules and converts them into new entities and catalytic processes are at the heart of chemistry and nature, so they are of significant industrial and commercial interest. The discovery that these metalloporphyrins act as efficient metal-free catalysts now opens new horizons for these natural pigments."

"Soon, we hope to tailor porphyrins according to specific requirements and use our rational design approach for various applications in chemistry, biochemistry, physics and beyond."
-end-


Trinity College Dublin

Related Chemistry Articles from Brightsurf:

Searching for the chemistry of life
In the search for the chemical origins of life, researchers have found a possible alternative path for the emergence of the characteristic DNA pattern: According to the experiments, the characteristic DNA base pairs can form by dry heating, without water or other solvents.

Sustainable chemistry at the quantum level
University of Pittsburgh Associate Professor John A. Keith is using new quantum chemistry computing procedures to categorize hypothetical electrocatalysts that are ''too slow'' or ''too expensive'', far more thoroughly and quickly than was considered possible a few years ago.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Principles for a green chemistry future
A team led by researchers from the Yale School of Forestry & Environmental Studies recently authored a paper featured in Science that outlines how green chemistry is essential for a sustainable future.

Sugar changes the chemistry of your brain
The idea of food addiction is a very controversial topic among scientists.

Reflecting on the year in chemistry
A lot can happen in a year, especially when it comes to science.

Better chemistry through tiny antennae
A research team at The University of Tokyo has developed a new method for actively controlling the breaking of chemical bonds by shining infrared lasers on tiny antennae.

Chemistry in motion
For the first time, researchers have managed to view previously inaccessible details of certain chemical processes.

Researchers enrich silver chemistry
Researchers from Russia and Saudi Arabia have proposed an efficient method for obtaining fundamental data necessary for understanding chemical and physical processes involving substances in the gaseous state.

The chemistry behind kibble (video)
Have you ever thought about how strange it is that dogs eat these dry, weird-smelling bits of food for their entire lives and never get sick of them?

Read More: Chemistry News and Chemistry Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.