Nav: Home

Optical ceramic meets metal-organic frameworks

February 06, 2018

Ceramic, a kind of poly-crystalline monolith sintered by inorganic, non-metallic crystallites, is normally opaque due to defects, voids and birefringence. If the inner light scatter is eliminated, ceramics can become transparent or optical ceramics.

Jie-Peng Zhang and co-workers, from Sun Yat-Sen University, developed a new type of materials, i.e. metal-organic frameworks, for preparation of the optical ceramics, recently published in Science China Materials, Issue 3 in 2018 as a cover article.

Zhang's group was devoted to the development for metal-organic frameworks and their applications in adsorption, separation and sensing for a long time. He said "Optical ceramic belongs to a special type of ceramics, and, like single crystals, it is optically transparent."

Despite the extensive applications in high performance optical glass and lasing gain medium, the development of optical ceramic heavily relies on the precursor materials.

"To make ceramics transparent, the inner pore and impurity should be minimized to ZERO. This is a very stringent demanding.", he says, "The precursors not only need high purity and uniform size distribution, but also crystallize in the cubic symmetry to remove birefringence effect."

In addition, generally, preparing ceramics has to undergo high-temperature sintering process. Therefore, up to date, only a few materials can be used for optical ceramics.

Porous coordination polymers, also known as metal-organic frameworks (MOFs), have captured widespread attention for adsorption, catalysis, sensing and optics. "However, commonly, they are microcrystalline powders." he says, "It is still challenging to prepare MOF membranes and single crystals with high quality and large size."

Despite low solubility in common solvent, the nanocrystals and building units of MOFs have notable exchange rate, especially in the grains with small size and large curvature. Zhang emphasized "It is essential to the crystal growth and ion/ligand exchange processes of MOFs." A condensed monolith may be formed by healing the defects inside the aggregates which are assembled by MOF nanocrystals.

Zhang, as the leader of the research group, tells us "This philosophy motivates us to employ MOF nanocrystals as precursors and then make them fused into a transparent monolith, i.e., metal-organic optical ceramics (MOOC)."

The SOD-type zinc(II) 2-methylimidazolate, namely MAF-4 or ZIF-8, is the first MOF with natural zeolite topology and crystal symmetry, and extensively studied for its special pore structure and high stability. Zhang says, "Experimentally, we used ethanol as solvent to produce MAF-4 nanocrystals in diameter of 20 nm, and the gelatinous substance obtained by centrifugation was dried in air at room temperature naturally, which is finally transformed to the colorless and transparent monoliths or MOOC-1, with 84% optical transmittance." He adds "If you dry the samples at high temperature and/or in vacuum, just like general processes in MOF syntheses, you can only obtain the MOF as common white powders."

X-ray diffraction analysis indicates that MOOC-1 is polycrystalline instead of single crystal or glass. The porosities inside MOF-4 and its assemblies allow the luminescent dye, sulforhodamine 640 (SRh), to be doped in MOOC-1 to form a luminescent optical ceramic SRh@MOOC-1, which produces amplified spontaneous emission (ASE) with a low energy threshold of 31 micro-Joule per square centimeter stimulated by a 532 nm laser. He highlights "This value is lower than previous reports of MOF-based ASE/lasing." "In addition, lowering the solvent evaporation rate is an effective method for fusing MOF nanocrystals into a dense and transparent crystal." Zhang adds.

Prof. Xiao-Ming Chen at Sun-Yat Sen University, the founder of MAF-4, tells us "This strategy extends the candidate scope of optical ceramics and paves a new way to develop MOF-based devices for optical, adsorption, separation and sensing applications."
This research was funded by the National Natural Science Foundation of China.

See the article: Jia-Wen Ye, Xuehong Zhou, Yu Wang, Rui-Kang Huang, Hao-Long Zhou, Xiao-Ning Cheng, Yuguang Ma and Jie-Peng Zhang. "Room-temperature sintered metal-organic framework nanocrystals: A new type of optical ceramics," Sci. China Mater. (2018) doi: 10.1007/s40843-017-9184-1.

Science China Press

Related Nanocrystals Articles:

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.
Balancing elementary steps for boosting alkaline hydrogen evolution
Recently, Professors Jin-Song Hu and Li-Jun Wan from Institute of Chemistry, Chinese Academy of Sciences and their collaborators designed the nanocrystals with tunable Ni/NiO heterosurfaces to target Volmer and Heyrovsky/Tafel steps in the alkaline hydrogen evolution reaction (HER) and discovered that such bicomponent active sites on the surface should be balanced for promoting HER performance.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene
In a collaboration between the US Department of Energy's Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or 'islands' sandwiched between or below two-dimensional (2D) materials such as graphene.
Invention by NUS chemists opens the door to safer and less expensive X-ray imaging
Professor Liu Xiaogang from the National University of Singapore led a team to develop novel lead halide perovskite nanocrystals that are highly sensitive to X-ray irradiation.
Hidden gapless states on the path to semiconductor nanocrystals
When chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were starting work on yet another material designed for the efficient production of nanocrystalline zinc oxide, they didn't expect any surprises.
Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again
A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.
Scientists create a UV detector based on nanocrystals synthesized by using ion implantation
Scientists at the Lobachevsky University have been working for several years to develop solar-blind photodetectors operating in the UV spectral band.
More Nanocrystals News and Nanocrystals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab