Nav: Home

Antibiotic-resistant plasmids flourish in hospital plumbing

February 06, 2018

Washington, DC - February 6, 2018 - Antibiotic-resistant organisms can be found in multiple locations in a hospital - on countertops and doorknobs, on computers and in sinks, and even inside the plumbing. To better understand how these organisms spread, investigators at the National Institutes of Health (NIH) in Bethesda, Maryland, recently collected samples from pipes beneath the hospital's intensive care unit and from outside manholes draining hospital wastewater. They conducted whole-genome analyses on the samples to study the bacterial plasmids, or rings of DNA, that can confer resistance to antibiotics.

The majority of samples they studied from the pipes and sewers tested positive for bacterial plasmids that confer resistance to carbapenems, the researchers report this week in mBio. Carbapenems are "last-resort" antibiotics given to hospital patients who develop infections from pathogens that are multidrug-resistant. The new findings add to a growing body of evidence suggesting that the conduits of hospital wastewater serve as a vast and resilient reservoir for plasmids that can confer the genes responsible for antibiotic resistance.

Some scientists suggest that these populations flourish in waste because of the common use of strong antibiotics in hospitals, which leads to an uptick in antibiotic-resistant microbes in the sewers. Microorganisms compete for survival in the environment, says NIH microbiologist Karen Frank, who co-led the current study. "The bacteria fight with each other and plasmids can carry genes that help them survive," she says. As part of a complex bacterial community, they can transfer the plasmids carrying resistance genes to each other. That lateral gene transfer means bacteria can gain resistance, even without exposure to the antibiotics.

Frank and her collaborators compared their data to five years' worth of patient data and samples collected from sinks and other high-touch areas, like countertops, door knobs, and computers. Remarkably, the high prevalence of carbapenem-resistant plasmids in the pipes and sewers wasn't observed in parts of the hospital to which patients had access. Of 217 samples analyzed from high-touch surfaces, only three (1.4 percent) tested positive for carbapenem-resistant organisms. Similarly, of 340 samples collected from drains, only 11 (3.2 percent) were positive.

That comparison suggests that surveillance efforts to watch for resistant organisms are successful in minimizing patient infections, even so close to a reservoir of resistant bacteria, says Frank. "If you're tracking resistant bacteria, you might be able to prevent more infections in patients." The comparison also raises an important question, she adds. "How much should we care that there are a bunch of plasmids down in the wastewater system if they're not infecting our patients?"

Understanding the plasmid exchange and when the plasmids get into the pathogens that infect our patients, she says, could help hospitals improve their monitoring of resistance-conferring genes: "In the big picture, the concern is the spread of these resistant organisms worldwide and some regions of the world are not tracking the spread of the hospital isolates."

In 2011, the NIHCC experienced a cluster of infections of carbapenem-resistant Klebsiella pneumoniae. Using whole genome sequencing, researchers traced the chains of transmission. That analysis was led by Frank's co-study leaders, epidemiologist Tara Palmore, also at the NIH Clinical Center, and geneticist Julie Segre, at the National Human Genome Research Institute. The analysis published in mBio, says Segre, uses newer DNA sequencing technology that lets researchers compare microbes from patients and the environment.

Palmore says that the 2011 NIHCC outbreak led the hospital to institute additional surveillance, including increased monitoring of high-risk patients and regular sampling of the hospital environment. By knowing where the resistance-conferring genes hide, she says, researchers have a better chance of keeping them away from patients.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 50,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Antibiotics Articles:

Antibiotics promote resistance on experimental croplands
Canadian researchers have generated both novel and existing antibiotic resistance mechanisms on experimental farmland, by exposing the soil to specific antibiotics.
Why antibiotics fail
UCSB biologists correct a flaw in the way bacterial susceptibility to these drugs is tested.
Fungi have enormous potential for new antibiotics
Fungi are a potential goldmine for the production of pharmaceuticals.
Antibiotics can boost bacterial reproduction
The growth of bacteria can be stimulated by antibiotics, scientists at the University of Exeter have discovered.
Last-line antibiotics are failing
The ECDC's latest data on antimicrobial resistance and consumption shows that in 2015, antibiotic resistance continued to increase for most bacteria and antibiotics under surveillance.
Two antibiotics fight bacteria differently than thought
Two widely prescribed antibiotics -- chloramphenicol and linezolid -- may fight bacteria in a different way from what scientists and doctors thought for years, University of Illinois at Chicago researchers have found.
Preserving the power of antibiotics
News release describes efforts to address inappropriate antibiotic prescribing in emergency departments and urgent-care centers nationwide, which a JAMA study published this past May found rates as high as 50 percent for acute respiratory infections in US emergency departments.
Antibiotics could be cut by up to one-third, say dairy farmers
Nine in 10 dairy farmers participating in a new survey from the Royal Association of British Dairy Farmers (RADBF) say that the farming industry must take a proactive lead in the battle against antibiotic resistance.
Antibiotics may be inappropriate for uncomplicated diverticulitis
Antibiotics are advised in most guidelines on diverticulitis, which arises when one or more small pouches in the digestive tract become inflamed or infected.
New book on Antibiotics and Antibiotic Resistance from CSHLPress
'Antibiotics and Antibiotic Resistance' from CSHLPress examines the major classes of antibiotics, together with their modes of action and mechanisms of resistance.

Related Antibiotics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.