Nav: Home

The dawn of gallium oxide microelectronics

February 06, 2018

WASHINGTON, D.C., February 6, 2018-- Silicon has long been the go-to material in the world of microelectronics and semiconductor technology. But silicon still faces limitations, particularly with scalability for power applications. Pushing semiconductor technology to its full potential requires smaller designs at higher energy density.

"One of the largest shortcomings in the world of microelectronics is always good use of power: Designers are always looking to reduce excess power consumption and unnecessary heat generation," said Gregg Jessen, principal electronics engineer at the Air Force Research Laboratory. "Usually, you would do this by scaling the devices. But the technologies in use today are already scaled close to their limits for the operating voltage desired in many applications. They are limited by their critical electric field strength."

Transparent conductive oxides are a key emerging material in semiconductor technology, offering the unlikely combination of conductivity and transparency over the visual spectrum. One conductive oxide in particular has unique properties that allow it to function well in power switching: Ga2O3, or gallium oxide, a material with an incredibly large bandgap.

In their article published this week in Applied Physics Letters, from AIP Publishing, authors Masataka Higashiwaki and Jessen outline a case for producing microelectronics using gallium oxide. The authors focus on field effect transistors (FETs), devices that could greatly benefit from gallium oxide's large critical electric field strength. a quality which Jessen said could enable the design of FETs with smaller geometries and aggressive doping profiles that would destroy any other FET material.

The material's flexibility for various applications is due to its broad range of possible conductivities -- from highly conductive to very insulating -- and high-breakdown-voltage capabilities due to its electric field strength. Consequently, gallium oxide can be scaled to an extreme degree. Large-area gallium oxide wafers can also be grown from the melt, lowering manufacturing costs.

"The next application for gallium oxide will be unipolar FETs for power supplies," Jessen said. "Critical field strength is the key metric here, and it results in superior energy density capabilities. The critical field strength of gallium oxide is more than 20 times that of silicon and more than twice that of silicon carbide and gallium nitride."

The authors discuss manufacturing methods for Ga2O3 wafers, the ability to control electron density, and the challenges with hole transport. Their research suggests that unipolar Ga2O3 devices will dominate. Their paper also details Ga2O3 applications in different types of FETs and how the material can be of service in high-voltage, high-power and power-switching applications.

"From a research perspective, gallium oxide is really exciting," Jessen said. "We are just beginning to understand the full potential of these devices for several applications, and it's a great time to be involved in the field."
The article, "The dawn of gallium oxide microelectronics," is authored by Masataka Higashiwaki and Gregg Jessen. The article will appear in Applied Physics Letters Feb., 6, 2018 (DOI: 10.1063/1.5017845). After that date, it can be accessed at


Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See

American Institute of Physics

Related Silicon Articles:

To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
Bringing silicon to life
Living organisms have been persuaded to make chemical bonds not found in nature, a finding that may change how medicines and other chemicals are made in the future.
Bringing carbon-silicon bonds to life
Following a few tweaks, heme proteins can efficiently catalyze the formation of carbon-silicon bonds, which are not found in any known biological molecules, nor capable of being created through any existing biological processes.
What a twist: Silicon nanoantennas turn light around
Scientists at MIPT and their colleagues from ITMO University and the University of Texas at Austin have developed a nonlinear nanoantenna that can be used to scatter light in a desired direction by varying its intensity.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Recharging on stable, amorphous silicon
Next-generation anodes for lithium ion batteries will probably no longer be made of graphite.
More stable qubits in perfectly normal silicon
The power of future quantum computers stems from the use of qubits, or quantum bits.
Silicon nanoparticles trained to juggle light
Silicon nanoparticles based devices would allow to transmit, reflect, or scatter incident light in a specified direction, depending on its intensity.
New silicon structures could make better biointerfaces
A team of researchers have engineered silicon particles one-fiftieth the width of a human hair, which could lead to 'biointerface' systems designed to make nerve cells fire and heart cells beat.

Related Silicon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".