Nav: Home

Searching for targeted treatments for inflammatory diseases

February 06, 2018

Inflammatory diseases such as Crohn's disease and multiple sclerosis have been linked to faults in a critical immune pathway that enables inflammation to continue unchecked.

Researchers from the Walter and Eliza Hall Institute in Melbourne, Australia, have shed new light on how this immune response is controlled, and hope it could lead to new drugs for people with these chronic diseases.

At a glance
  • Crohn's disease and multiple sclerosis are linked to defects in the NOD2 immune pathway that enables uncontrolled inflammation.

  • Scientists identified key regulators that are essential for controlling the inflammatory response in these conditions.

  • The discovery will assist researchers in identifying new, targeted treatments for inflammatory diseases including Crohn's disease and multiple sclerosis.


A NOD to inflammatory diseases

Mr Che Stafford, Dr Ueli Nachbur, Professor John Silke and colleagues at the Institute led the research, which was published today in Cell Reports.

The critical immune pathway in question is the NOD2 pathway, which detects and responds to bacterial invaders by releasing inflammatory signals to fight the infection.

Inflammatory diseases such as multiple sclerosis, Crohn's disease (an inflammatory bowel disease) and inflammatory skin diseases have been linked to faults in how the NOD2 pathway is regulated.

Dr Nachbur said faults in how the NOD2 pathway was controlled could enable the cell to continue to cause inflammation long after the bacterial threat has passed, leading to chronic inflammatory diseases.

"Inflammation occurs when our immune cells release inflammatory messengers, or cytokines, which is a normal response to disease. However when too many cytokines are produced, inflammation can get out-of-control and damage our own body - a hallmark of inflammatory diseases," Dr Nachbur said.

Inflammatory 'controllers' identified

Mr Stafford said the research team showed that a protein called xIAP was the 'master controller' that initiated inflammation via the NOD2 pathway.

"We revealed that xIAP was the key to initiating the inflammatory response in these cells," Mr Stafford said. "We also showed that, once the NOD2 pathway trigger is initiated, the cells need a second, amplifying step to complete a full-strength immune response."

Knowing the key players in the entire NOD2 pathway, from initiators to enhancers, would pave the way for new strategies to treat inflammatory diseases, Mr Stafford said.

"Targeting key components of the NOD2 pathway shows promise as a way of switching off ongoing inflammation associated with diseases such as Crohn's disease and multiple sclerosis.

"In 2015 our research team showed that blocking a different protein in the NOD2 pathway could halt inflammation, and was able to halt the progression of multiple sclerosis in a preclinical model. So it is very exciting to identify other potential targets for treating these diseases," he said.

Need for targeted treatments

Clarifying how the NOD2 pathway was regulated on a molecular level was important for developing new treatments for inflammatory diseases, Dr Nachbur said.

"Chronic inflammatory conditions such as Crohn's disease and multiple sclerosis have a very significant impact to people's lives and new, targeted treatments are urgently needed.

"xIAP has other roles in the cell, such as regulation of cell death, so it is a tricky target for treating inflammatory diseases. However these new discoveries provide us with vital information to develop new treatment strategies that could lead to a safe and effective way of switching off inflammation for treating disease," Dr Nachbur said.
-end-
The research was supported by the Australian National Health and Medical Research Council, Australian Research Council, Swiss National Science Foundation and Victorian Government.

Walter and Eliza Hall Institute

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...