Nav: Home

Mouse study reveals what happens in the gut after too much fructose

February 06, 2018

Princeton University researchers report that in mice, fructose, a sugar found in fruit, is processed mainly in the small intestine, not in the liver as had previously been suspected. Sugary drinks and processed high-sugar foods overwhelm the small intestine and spill into the liver for processing. Additionally, the authors learned that the ability of the small intestine to process fructose is higher after a meal. The work appears February 6 in the journal Cell Metabolism.

Evidence from previous animal and human studies has shown that excessive sugar ingestion can be harmful, especially to the liver. Chronic over-consumption can lead to obesity and foster insulin resistance that can progress to diabetes; it also can contribute to non-alcoholic fatty liver disease, which can lead to cirrhosis or liver cancer.

"There is a fundamental physiological difference in how smaller and larger amounts of sugar are processed in the body," explains Joshua D. Rabinowitz of the Lewis-Sigler Institute for Integrative Genomics at Princeton University, whose laboratory led the study. The prior view was that the liver processes all ingested sugar. But this study showed that more than 90 percent of the fructose was cleared by the small intestine in mice.

"We can offer some reassurance--at least from these animal studies--that fructose from moderate amounts of fruits will not reach the liver," he says. However, the small intestine probably starts to get overwhelmed with sugar halfway through a can of soda or large glass of orange juice.

In the study, Rabinowitz and his colleagues studied the path of isotope-labeled fructose through the digestive systems of laboratory mice. The researchers observed that excess fructose that is not absorbed by the small intestine continues through the intestine into the colon. As a consequence, it also comes into contact with the natural microbiotic flora of the large intestine and colon, known as the microbiome.

"The microbiome is designed to never see sugar," Rabinowitz says. "One can eat an infinite amount of carbohydrates, and there will be nary a molecule of glucose that enters the microbiome. But as soon as you drink the soda or juice, the microbiome is seeing an extremely powerful nutrient that it was designed to never see."

While the study did not show that fructose influences the microbiome, the authors suggest an effect is likely and should be studied further to learn more about the biological consequences of high sugar intake.

The investigators also found that the small intestine clears fructose more efficiently after a meal. "We saw that feeding of the mice prior to the sugar exposure enhanced the small intestine's ability to process fructose," said Rabinowitz. "And that protected the liver and the microbiome from sugar exposure." The researchers theorize that in a fasting state, such as upon awakening or in the mid-afternoon, one is extra vulnerable to fructose due to a lessened ability to process it in the small intestine.

Although the study was conducted in mice, Rabinowitz encourages "the most old-fashioned advice in the world" for humans. Limit sweets to moderate quantities after meals, and do not have sweet drinks away from meal time.
-end-
The researchers were supported the American Diabetes Association, the Life Sciences Research Foundation, and the LAM Foundation. Several co-authors are employees of Pfizer, Inc.

Cell Metabolism, Jang, C. et al: "The Small Intestine Converts Dietary Fructose into glucose and organic acids" http://www.cell.com/cell-metabolism/fulltext/S1550-4131(17)30729-5

Cell Metabolism (@Cell_Metabolism), published by Cell Press, is a monthly journal that publishes reports of novel results in metabolic biology, from molecular and cellular biology to translational studies. The journal aims to highlight work addressing the molecular mechanisms underlying physiology and homeostasis in health and disease. Visit: http://www.cell.com/cell-metabolism. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Microbiome Articles:

The dust storm microbiome
The airborne dust carried in sand storms affects the health of people and ecosystems alike.
Makeup of vaginal microbiome linked to preterm birth
In a study of predominantly African-American women -- who have a much higher rate of delivering babies early compared with other racial groups -- researchers at Washington University School of Medicine in St.
Breast-feeding's role in 'seeding' infant microbiome
UCLA-led study finds that 30 percent of the beneficial bacteria in a baby's intestinal tract come directly from mother's milk, and an additional 10 percent comes from skin on the mother's breast.
Chronic fatigue syndrome linked to imbalanced microbiome
Scientists at the Center for Infection and Immunity (CII) at Columbia University's Mailman School of Public Health have discovered abnormal levels of specific gut bacteria related to chronic fatigue syndrome/myalgic encephalomyelitis, or ME/CFS, in patients with and without concurrent irritable bowel syndrome, or IBS.
'Genetic scalpel' can manipulate the microbiome, Yale study shows
Yale University researchers have developed new methods for regulating gene activity in a widespread group of microbiome bacteria in the gut of living mice -- a crucial step in understanding microbiome's impact on health and disease.
An unbalanced microbiome on the face may be key to acne development
At the Microbiology Society's Annual Conference, researchers will show that the overall balance of the bacteria on a person's skin, rather than the presence or absence of a particular bacterial strain, appears to be an important factor for acne development and skin health.
Microbiome diversity is influenced by chance encounters
An MIT study suggests chance is an overlooked factor in the wide variation of microbe gut populations between individuals.
From mice, clues to microbiome's influence on metabolic disease
The community of microorganisms that resides in the gut, known as the microbiome, has been shown to work in tandem with the genes of a host organism to regulate insulin secretion, a key variable in the onset of the metabolic disease diabetes.
Study shows how a dog's diet shapes its gut microbiome
Studies of the gut microbiome have gone to the dogs -- and pets around the world could benefit as a result.
'FishTaco' sorts out who is doing what in your microbiome
How much do different bacterial species contribute to disease-associated imbalances in the human microbiome?

Related Microbiome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".