Nav: Home

Production of solar fuels inches closer with discovery by Caltech scientists

February 06, 2018

Caltech researchers have made a discovery that they say could lead to the economically viable production of solar fuels in the next few years.

For years, solar-fuel research has focused on developing catalysts that can split water into hydrogen and oxygen using only sunlight. The resulting hydrogen fuel could be used to power motor vehicles, electrical plants, and fuel cells. Since the only thing produced by burning hydrogen is water, no carbon pollution is added to the atmosphere.

In 2014, researchers in the lab of Harry Gray, Caltech's Arnold O. Beckman Professor of Chemistry, developed a water-splitting catalyst made of layers of nickel and iron. However, no one was entirely sure how it worked. Many researchers hypothesized that the nickel layers, and not the iron atoms, were responsible for the water-splitting ability of the catalyst (and others like it).

To find out for sure, Bryan Hunter (PhD '17), a former fellow at the Resnick Institute, and his colleagues in Gray's lab created an experimental setup that starved the catalyst of water. "When you take away some of the water, the reaction slows down, and you are able to take a picture of what's happening during the reaction," he says.

Those pictures revealed the active site of the catalyst--the specific location where water is broken down into oxygen--and showed that iron was performing the water-splitting reaction, not nickel.

"Our experimentally supported mechanism is very different than what was proposed," says Hunter, first author of a paper published February 6 in Joule, a journal of sustainable-energy research, describing the discovery. "Now we can start making changes to this material to improve it."

Gray, whose work has focused on solar fuels for decades, says the discovery could be a "game changer" for the field.

"This will alert people worldwide that iron is particularly good for this kind of catalysis," he says. "I wouldn't be at all shocked if people start using these catalysts in commercial applications in four or five years."
The paper describing the research is titled, "Trapping an Iron(VI) Water Splitting Intermediate in Nonaqueous Media." Other co-authors are Gray; grad student Niklas B. Thompson, laser technologist Astrid M. Muller, and faculty associate Jay R. Winkler of Caltech's Beckman Institute; Professor of minerology George R. Rossman of Caltech's Division of Geology and Planetary Sciences; and Michael G. Hill of Occidental College.

Support for the research was provided by the National Science Foundation and the Arnold and Mabel Beckman Foundation.

California Institute of Technology

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...