Nav: Home

Shoals of sticklebacks differ in their collective personalities

February 06, 2018

Research from the University of Cambridge has revealed that, among schooling fish, groups can have different collective personalities, with some shoals sticking closer together, being better coordinated, and showing clearer leadership than others.

For centuries, scientists and non-scientists alike have been fascinated by the beautiful and often complex collective behaviour of animal groups, such as the highly synchronised movements of flocks of birds and schools of fish. Often, those spectacular collective patterns emerge from individual group members using simple rules in their interactions, without requiring global knowledge of their group.

In recent years it has also become apparent that, across the animal kingdom, individual animals often differ considerably and consistently in their behaviour, with some individuals being bolder, more active, or more social than others.

New research conducted at the University of Cambridge's Department of Zoology suggests that observations of different groups of schooling fish could provide important insights into how the make-up of groups can drive collective behaviour and performance.

In the study, published today in the journal Proceedings of the Royal Society B, the researchers created random groups of wild-caught stickleback fish and subjected them repeatedly to a range of environments that included open spaces, plant cover, and patches of food.

Dr Jolle Jolles, lead author of the study, now based at the Max Planck Institute for Ornithology, said: "By filming the schooling fish from above and tracking the groups' movements in detail, we found that the randomly composed shoals showed profound differences in their collective behaviour that persisted across different ecological contexts. Some groups were consistently faster, better coordinated, more cohesive, and showed clearer leadership structure than others.

"That such differences existed among the groups is remarkable as individuals were randomly grouped with others that were of similar age and size and with which they had very limited previous social contact."

This research shows for the first time that, even among animals where group membership changes frequently over time and individuals are not very strongly related to each other, such as schooling fish or flocking birds, stable differences can emerge in the collective performance of animal groups.

Such behavioural variability among groups may directly affect the survival and reproductive success of the individuals within them and influence how they associate with one another. Ultimately these findings may therefore help understand the selective pressures that have shaped social behaviour.

Dr Andrea Manica, co-author of the paper from the University of Cambridge, added: "Our research reveals that the collective performance of groups is strongly driven by their composition, suggesting that consistent behavioural differences among groups could be a widespread phenomenon in animal societies."

These research findings provide important new insights that may help explain and predict the performance of social groups, which could be beneficial in building human teams or constructing automated robot swarms.
-end-
The research was supported by the Biotechnology and Biological Sciences Research Council.

University of Cambridge

Related Behaviour Articles:

New method improves measurement of animal behaviour using deep learning
Konstanz researchers develop deep learning toolkit for high-speed measurement of body posture in animals.
Impulsive behaviour linked to sleep and screen time, CHEO study finds
A paper published today in Pediatrics suggests that children and youth who do not sleep enough and use screens more than recommended are more likely to act impulsively and make poorer decisions.
Prenatal parental stress linked to behaviour problems in toddlers
Expectant parents' emotional struggles predict emotional and behavioural problems in 2-year-olds, new research shows.
Transformer cells: Shaping cellular 'behaviour'
Scientists from the Sechenov University, conjointly with their fellow Chinese and American researchers, have examined the latest advances in the use of skeletal muscle progenitor cells, specifying the core challenges inherent to the applicability of MPCs in cell therapy, and outlining the most promising breakthrough technologies.
Heritable behavioral differences between cat breeds
Cat breeds differ from each other in behavior with regard to activity, aggressiveness, shyness, sociability and stereotypical behavior.
More Behaviour News and Behaviour Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...