Nav: Home

Study sheds new light on antibiotics produced by ants

February 06, 2018

Ants, like humans, deal with disease. To deal with the bacteria that cause some of these diseases, some ants produce their own antibiotics. A new comparative study identified some ant species that make use of powerful antimicrobial agents - but found that 40 percent of ant species tested didn't appear to produce antibiotics. The study has applications regarding the search for new antibiotics that can be used in humans.

"These findings suggest that ants could be a future source of new antibiotics to help fight human diseases," says Clint Penick, an assistant research professor at Arizona State University and former postdoctoral researcher at North Carolina State University who is lead author of the study.

"One species we looked at, the thief ant (Solenopsis molesta), had the most powerful antibiotic effect of any species we tested - and until now, no one had even shown that they made use of antimicrobials," says Adrian Smith, co-author of the paper, an assistant research professor of biological sciences at NC State and head of the NC Museum of Natural Sciences' Evolutionary Biology & Behavior Research Lab.

For this study, researchers tested the antimicrobial properties associated with 20 ant species. They did this by using a solvent to remove all of the substances on the surface of each ant's body. The resulting solution was then introduced to a bacterial slurry. The growth of the bacteria in the slurry was then compared to the growth of bacteria in a control group.

If bacteria in a slurry that contained ant solution grew less than the control group, that meant that an antimicrobial agent was at work. For example, the slurry containing thief ant compounds showed no bacterial growth at all.

The researchers found that 12 of the 20 ant species had some sort of antimicrobial agent on their exoskeletons - including some species, like the thief ant, that hadn't previously been shown to do so. But eight of the ant species seemed not to make use of antibiotics at all. Or, at least, any antimicrobials on their exoskeletons were ineffective against the bacteria used in the study.

"Finding a species that carries a powerful antimicrobial agent is good news for those interested in finding new antibiotic agents that can help humans," Smith says. "But the fact that so many ant species appear to have little or no chemical defense against microbial pathogens is also important."

That's because the conventional wisdom has long been that most, if not all, ant species carry antimicrobial agents. But this work indicates that the conventional wisdom is wrong.

"We thought every ant species would produce at least some type of antimicrobial," Penick says. "Instead, it seems like many species have found alternative ways to prevent infection that do not rely on antimicrobial chemicals."

"The fact that not all ants use antimicrobials highlights the importance of refining our search for species that actually do hold promise for biomedical research," Smith says.

"For example, the thief ant is closely related to the red imported fire ant (Solenopsis invicta), which is well known for the antimicrobial properties of its venom. But in our study, we found that the thief ant was even more effective against bacteria than the fire ant. There may be other species in the same genus that are worth studying for their antimicrobial potency."

The researchers caution that this study is a first step, and that this study does have limitations. For example, the researchers used only one bacterial agent in their tests, meaning it is not clear how each species would fare against other bacteria.

"Next steps include testing ant species against other bacteria; determining what substances are producing the antibiotic effects - and whether ants produce them or obtain them elsewhere; and exploring what alternative strategies ants use to defend against bacterial pathogens," Smith says.
-end-
The paper, "External immunity in ant societies: sociality and colony size do not predict investment in antimicrobials," is published in the journal Royal Society Open Science. Co-authors include Omar Halawani, a graduate student at NC State; Bria Pearson, a former undergraduate at NC State; Stephanie Mathews, a former postdoctoral researcher at NC State who is now on faculty at Campbell University; and Margarita López-Uribe, a former postdoctoral researcher at NC State who is now on faculty at Penn State University.

The work was done with funding from the Triangle Center for Evolutionary Medicine and the National Science Foundation under grants 1523817, 0953390 and 1319293.

North Carolina State University

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Don't Fear Math
Why do many of us hate, even fear math? Why are we convinced we're bad at it? This hour, TED speakers explore the myths we tell ourselves and how changing our approach can unlock the beauty of math. Guests include budgeting specialist Phylecia Jones, mathematician and educator Dan Finkel, math teacher Eddie Woo, educator Masha Gershman, and radio personality and eternal math nerd Adam Spencer.
Now Playing: Science for the People

#517 Life in Plastic, Not Fantastic
Our modern lives run on plastic. It's in the computers and phones we use. It's in our clothing, it wraps our food. It surrounds us every day, and when we throw it out, it's devastating for the environment. This week we air a live show we recorded at the 2019 Advancement of Science meeting in Washington, D.C., where Bethany Brookshire sat down with three plastics researchers - Christina Simkanin, Chelsea Rochman, and Jennifer Provencher - and a live audience to discuss plastics in our oceans. Where they are, where they are going, and what they carry with them. Related links:...