Nav: Home

More physical than chemical: Researchers show what really gets cells going

February 06, 2019

Osaka, Japan - Collective cell migration, where groups of cells move together with a common purpose, is important for processes ranging from wound healing to tumor metastasis. Migrating cells respond to a combination of physical cues elicited by cell-to-cell contact and waves of chemical signals sent out by local cells to attract others to their location.

Recently, however, a team led by researchers from Osaka University have found that this combined approach may not be the case for cells at all stages of development.

In the study published recently in Communications Biology, the researchers used model organism Dictyostelium discoideum to better understand the cues controlling collective cell migration during development. Referred to as social amoebae, unicellular D. discoideum cluster together in times of stress to form a multicellular aggregate called a slug.

Though their less-than-enticing name may inspire shudders in readers who have encountered their animal namesake, cells within the slugs seem to like getting up-close and personal: the researchers found that while free-living cells respond to waves of chemical stimuli, slug cells require physical interaction to induce migration.

Hidenori Hashimura, lead author of the study, explained how they used changes in the intensity of chemical signals to deduce the importance of this type of signalling at different developmental stages. "Cyclic adenosine 3',5'-monophosphate (cAMP) is the only chemical guidance cue for cell aggregation. Using live cell imaging, we clearly observed waves of cAMP, which can be visualized using a green fluorescent probe, during the initial stages of cell aggregation," says corresponding author Yusuke V. Morimoto. However, it was revealed that the cAMP signals gradually disappeared during migration of the multicellular slugs.

"We found that the cAMP propagation waves thought to control mass cellular movement during all stages of Dictyostelium development actually disappeared once the cells aggregated into multicellular slugs," explains co-author Masahiro Ueda. "Although cell movement within the slugs was equal to that of cells in the early aggregation stage, the absence of cAMP signal waves suggested an alternative cue for collective cell migration."

The researchers proposed that "contact following", where physical contact between cells allows them to follow each other, is likely to be responsible for collective cell migration during the slug phase of Dictyostelium development.

This is the first time researchers have examined cAMP signal dynamics in the multicellular phase of Dictyostelium development and highlights the importance of examining cellular processes at all stages of development. More importantly, understanding collective cell migration cues is a vital step in developing methods to prevent metastatic cancer and promote wound healing.
-end-
The article, "Collective cell migration of Dictyostelium without cAMP oscillations at multicellular stages," was published in Communications Biology at DOI: https://doi.org/10.1038/s42003-018-0273-6.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Wound Healing Articles:

New wound healing properties of ficin researched at Kazan University
Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses.
Scratch test -- wound healing disrupted by smoke but not by Vype e-cigarette vapor
A new laboratory study reveals that cigarette smoke completely prevented wound healing at concentrations over 20 percent in a wound healing assay, whereas e-cigarette vapor had no effect, even at 100 percent concentration and double the amount of nicotine relative to smoke.
Researchers develop novel wound-healing technology
A WSU research team has successfully used a mild electric current to take on and beat drug-resistant bacterial infections, a technology that may eventually be used to treat chronic wound infections.
GW researcher receives $2.8M grant to continue study of corneal wound healing
Mary Ann Stepp, Ph.D., professor of anatomy and regenerative biology and of opthalmology at the George Washington University School of Medicine and Health Sciences, received a $2.8 million grant to continue her 27 years of research on corneal wound healing.
Diabetes: new hope for better wound healing
Sluggish insulin metabolism results in slow and incomplete healing of injuries.
Finely tuned electrical fields give wound healing a jolt
A new research report appearing in the June 2016 issue of the Journal of Leukocyte Biology, opens up the possibility that small electrical currents might activate certain immune cells to jumpstart or speed wound healing.
New mechanism for wound healing identified by MDI Biological Laboratory scientist
MDI Biological Laboratory scientist Vicki P. Losick, Ph.D., has identified a new mechanism for wound healing that has wide-ranging therapeutic potential for the treatment of injury, disease and even aging.
Modified maggots could help human wound healing
In a proof-of-concept study, NC State University researchers show that genetically engineered green bottle fly larvae can produce and secrete a human growth factor -- a molecule that helps promote cell growth and wound healing.
Enzyme involved in glucose metabolism promotes wound healing, study finds
An enzyme involved in glucose metabolism in cells plays a major role in the early steps of wound healing, a finding that could lead to new therapeutic approaches for wound care, according to researchers at Georgia State University.
Gene identified that helps wound healing
Researchers at Ohio State University have pinpointed a human gene product that helps regulate wound healing and may control scarring in people recovering from severe injuries and damage to certain internal organs.

Related Wound Healing Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...