Nav: Home

Shedding light on zebrafish daily rhythms: Clock gene functions revealed

February 06, 2019

Tokyo, Japan - Animals have distinct behavioral patterns depending on the time of day, with diurnal animals being active during the day and sleeping at night, and vice versa in nocturnal ones. Although genes called clock genes are known to be involved in translating the 24-hour fluctuating rhythm of light exposure into appropriate physiological responses, much remains unclear about how this is achieved.

By focusing on the widely used research tool zebrafish, researchers at Tokyo Medical and Dental University (TMDU) and colleagues across Japan have shed light on how three clock genes function in responding to light. By abolishing the activity of these genes in zebrafish, this work shows that these genes determine the daily behavioral rhythms of moving and resting, as well as the total time spent being active.

In this study recently reported in the journal Scientific Reports, the team selected zebrafish given the number with which they produce offspring, their simplicity in comparison to mammals, and their simple behavioral rhythms that can be easily quantified and studied. They focused on the genes Cry1a, Per2, and Cry2a in this species, analyzing their functions by knocking out one, two, or all three of them using specific enzymes that can cut DNA

The group then compared normal, unaltered zebrafish with their single-, double-, and triple-knockout counterparts under conditions of complete darkness, 3 hours of light exposure, and 12 hours of light exposure. The latter of these reflected typical conditions when exposed to the fluctuations of light over the course of a day and night.

"In our comparisons of the various zebrafish groups, we found differences in the effects of double knockout of the genes Per2 and Cry1a under 3 hours and 12 hours of light exposure," corresponding author Hiroshi Nishina says. "The fish showed lower total activity and abnormal locomotion and resting behaviors with 3 hours of light, but these latter abnormalities were improved in the group with 12 hours of exposure, suggesting different regulatory mechanisms between circadian rhythm and locomotor activity.

The team then applied microarray analysis to look more closely at the other specific genes whose expression was affected by knockout of the clock genes. They found that the gene knockout and associated behavioral abnormalities were linked to altered expression of genes involved in metabolism. The findings suggest that the clock genes are connected to the supply of energy to the organism, with their absence reducing this supply and as a result causing lower locomotion and more resting by the zebrafish.

"Our work reveals the importance of the light-inducible clock genes in maximizing physiological efficiency considering a particular organism's lifestyle," Jun Hirayama says. "It boosts basic research in this field and could even help in treating sleep disorders related to these genes."
-end-
The article "The clock components Period2, Cryptochrome1a, and Cryptochrome2a function in establishing light-dependent behavioral rhythms and/or total activity levels in zebrafish" is published in Scientific Reports at doi: 10.1038/s41598-018-37879-8

Tokyo Medical and Dental University

Related Metabolism Articles:

A new way to control microbial metabolism
To help optimize microbes' ability to produce useful compounds but also maintain their own growth, MIT chemical engineers have devised a way to induce bacteria to switch between different metabolic pathways at different times.
Parasite manipulates algal metabolism for its own benefit
Researchers from the Max Planck Institute for Chemical Ecology and the universities of Jena and Frankfurt show that a pathogenic fungus alters the metabolism of its host unicellular algae, for its own purposes: the small bioactive substances that are formed in the process benefit the fungi's own propagation while preventing the algae from proliferating.
Lack of sleep affects fat metabolism
A restricted-sleep schedule built to resemble an American work week made study participants feel less full after a fatty meal and altered their lipid metabolism.
Mastering metabolism for shark and ray survival
Understanding the internal energy flow -- including the metabolism -- of large ocean creatures like sharks and rays could be key to their survival in a changing climate, according to a new study.
Rutgers researchers identify the origins of metabolism
A Rutgers-led study sheds light on one of the most enduring mysteries of science: How did metabolism -- the process by which life powers itself by converting energy from food into movement and growth -- begin?
Challenging metabolism may help fight disease
New research by Swansea University academics has shown that harnessing metabolism at a cellular level may help to relieve or heal a range of disorders.
How obesity affects vitamin D metabolism
A new Journal of Bone and Mineral Research study confirms that vitamin D supplementation is less effective in the presence of obesity, and it uncovers a biological mechanism to explain this observation.
Micro-control of liver metabolism
A new discovery has shed light on small RNAs called microRNAs in the liver that regulate fat and glucose metabolism.
Untangling the impacts of gut bacteria on drug metabolism
Individual drugs show variations in how successful or toxic they are, person to person.
Fruit flies help to shed light on the evolution of metabolism
Researchers at the University of Helsinki have discovered that the ability to use sugar as food varies strongly between closely related fruit fly species.
More Metabolism News and Metabolism Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab