Nav: Home

Fate of the subducted oceanic crust revealed by laboratory experiments

February 06, 2019

Professor Tetsuo Irifune of the Geodynamics Research Center (GRC) of Ehime University heads a research group investigating the Earth's interior by means of experiments at extreme pressures and temperatures, simulating those expected in the deepest regions of our planet.

Using a combination of ultrasonic techniques and a large volume press apparatus, GRC researchers were successful in measuring the sound velocities of CaSiO3 perovskite (CaPv), an important mineral of the mantle at depths below 560 km. This result allowed them to directly interpret seismic observations by a comparison with their velocity profiles obtained in the laboratory, and derived some composition models for the regions across the 660 km depth discontinuity that marks the boundary between the upper and lower mantle.

The scientific article that presents their results was published on January 10 in the highly regarded journal Nature.

CaPv constitutes 7-10 vol% of the pyrolitic mantle and up to 30 vol% of subducted basaltic rocks below ~560 km depth and therefore is an important constituent mineral in both the mantle transition region (MTR; 410-660 km in depth) and lower mantle (660-2900 km in depth). CaPv also plays an important role in immobilizing heavy elements such as rare earth elements or actinides in the mantle due to its large calcium site, which can easily accommodate such large elements. But despite such importance, no measurements of sound velocities have been made CaPv at high temperatures, because this phase is unstable at ambient conditions and hence there was no adequate sample for such measurements.

"Because CaPv is only stable at pressure and temperature conditions of the mantle, we designed an experiment that allows us to synthesize this phase with the adequate shape and dimension under high pressure, then subsequently send an acoustic wave directly into the pressurized sample. Using this new approach, we can study high-pressure minerals, which are not stable at atmospheric conditions, such as CaPv." says Steeve Gréaux, the researcher leading this project.

Professor Irifune and his team already demonstrated in 2008, that pyrolite, a hypothetical rock composition derived as a mixture of basalt and peridotite agree well with geophysical observations at depths down to 560 km, which was also reported in Nature. However, at that time, they could not draw further conclusions at depths lower than 560 km because there was no available data on CaPv. Their 2019 results became the last piece of a puzzle and allowed them to complete their hypotheses for the seismic structure of the mantle in between the depths of 560 km and 800 km.

"We did find that the cubic form of CaPv, which is most likely to be present in the mantle, has lower velocities than what was formerly predicted by theoretical studies. This result refutes previous models that proposed formation of CaPv in pyrolite could explain the steep velocity gradient above a depth of 660 km. On the other hand, it is in good agreement with a former study proposing the presence of basalts beneath a depth of 660 km on the basis of density measurements." says Tetsuo Irifune.

These new results indeed show that the presence of subducted oceanic crust can explain the magnitude of the reduction of shear velocity below a depth of 660 km, as observed beneath North America. Incidentally, the model they proposed is very consistent with the recent discovery, in 2018, of CaPv in a natural diamond, which provides evidence for the presence of oceanic crust material in the uppermost lower mantle. It is also compatible with global-scale geodynamics calculations that predicted basalt enrichment beneath 660 km would stabilize the subducted slab in this region.

The authors conclude "CaPv, which was once called "invisible" in the lower mantle as this phase was predicted to have velocities similar to those of the most abundant mineral (MgSiO3 perovskite or bridgmanite) in fact holds velocities substantially lower than those of bridgmanite at depths of 660-800 km, which should greatly contribute to tracing the existence and recycling of the former oceanic crust in the Earth's lower mantle.".

Ehime University

Related Oceanic Crust Articles:

Why a crackly crust is essential to a baguette's aroma and taste
An authentic French baguette is one of those key staples that foodies hunt for.
New theory on how Earth's crust was created
Conventional theory holds that all of the early Earth's crustal ingredients were formed by volcanic activity.
Rock samples indicate water is key ingredient for crust formation
By examining the cooling rate of rocks that formed more than 10 miles beneath the Earth's surface, scientists led by The University of Texas at Austin Jackson School of Geosciences have found that water probably penetrates deep into the crust and upper mantle at mid-ocean spreading zones, the places where new crust is made.
A new interpretation of petrogenesis of the early continental crust rock (trondhjemite) in the earth
Petrogenesis of ancient granitoids is the key to understand the formation and evolution of the early continental crust in the earth.
Viruses in the oceanic basement
A team of scientists from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) showed for the first time that many novel viruses are present in the fluids circulating deep in the rocky crust of the seafloor known as the ocean basement.
Using a method from Wall Street to track slow slipping of Earth's crust
An indicator for stock prices can be used with GPS data to automatically detect slow-slip earthquakes from a single station's observations, offering a new way to monitor seismic activity.
Earth's first example of recycling -- its own crust!
Rock samples from northeastern Canada retain chemical signals that help explain what Earth's crust was like more than 4 billion years ago, reveals new work from Carnegie's Richard Carlson and Jonathan O'Neil of the University of Ottawa.
Parts of the Earth's original crust remain in place today
Analysis of rock samples harvested from the Canadian Shield suggests the samples contain components of Earth's crust that existed more than 4.2 billion year ago.
CRUST adds new layer of defense against earthquakes and tsunamis
The first computer model to simulate the whole chain of events triggered by offshore mega subduction earthquakes could reduce losses to life and property caused by disasters like the huge earthquake and tsunami that struck Japan six years ago this Saturday.
UCI researchers map oceanic troughs below ice sheets in West Antarctica
University of California, Irvine glaciologists have uncovered large oceanic valleys beneath some of the massive glaciers flowing into the Amundsen Sea in West Antarctica.

Related Oceanic Crust Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...