Nav: Home

Cracks herald the calving of a large iceberg from Petermann Glacier

February 06, 2019

Cracks in the floating ice tongue of Petermann Glacier in the far northwest reaches of Greenland indicate the pending loss of another large iceberg. As glaciologists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) report in a new study, the glacier's flow rate has increased by an average of 10 percent since the calving event in 2012, during which time new cracks have also formed - a quite natural process. However, the experts' model simulations also show that, if these ice masses truly break off, Petermann Glacier's flow rate will likely accelerate further and transport more ice out to sea, with corresponding effects on the global sea level. The study was recently released in the Journal of Geophysical Research: Earth Surface and is freely available.

Located in the outermost northwest corner of Greenland, Petermann Glacier is one of the most prominent glaciers in the region: partly because its catchment encompasses four percent of the Greenland Ice Sheet, and partly because it is one of only three glaciers in Greenland with a floating ice tongue. That tongue currently extends roughly 70 kilometres into Petermann Fjord. Cracks 12 kilometres above the previous glacier edge indicate that, in the near future, another major iceberg could calve from Petermann Glacier.

Glaciologists at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) in Bremerhaven came to this conclusion after analysing satellite imagery of the glacier from the past ten years. "The satellite data shows that Petermann Glacier had a flow speed of roughly 1135 metres per year in the winter of 2016. That equates to an acceleration of about 10 percent in comparison to the winter of 2011, and we asked ourselves what was responsible for the increased speed," explains AWI glaciologist and co-author Niklas Neckel.

Fjord sidewalls serve as stabilizing effect to the glacier

The researchers subsequently simulated the glacier's observed ice transport in a computer model and were able to confirm that the loss of a large iceberg in August 2012 is what triggered the acceleration. "On their way to the sea, the glacier's ice masses rub along the rock walls that enclose the fjord to the left and right. If a major iceberg breaks away from the end of the glacier's tongue, it will reduce the tongue's overall length, and with it, the route along which the ice masses scrape against the stone. This in turn limits the walls' braking effect, so that the glacier begins flowing faster," explains AWI ice modeller and first author Martin Rückamp.

The computer model predicts that a new calving event would produce a similar acceleration. "We can't predict when Petermann Glacier will calve again, or whether a calving event would actually calve along the cracks we identified in the ice tongue," says Rückamp. "But we can safely assume that, if it does come to a new calving event, the tongue will retreat considerably, and the rock's stabilizing effect will further decline."

An effect of climate change?

To what extent Petermann Glacier's accelerated ice transport is due to various global warming impacts is a question that the experts haven't yet investigated in depth. "We now know that the loss of icebergs increases the glacier's flow rate. In addition, we've observed that calving events on Petermann Glacier are happening more frequently. But the question of whether these changes are due to the warming atmosphere over Greenland, or to warmer seawater, isn't an aspect that we could investigate using the satellite data," says Niklas Neckel. Nevertheless, the experts consider the acceleration of Petermann Glacier to be an important signal. Unlike the glaciers in southeast and southwest Greenland, those in the island's northern reaches have remained largely stable; now that appears to have changed.

Since 2002, the Greenland Ice Sheet and the island's glaciers have lost an average of 286 billion tonnes of ice per year. This loss of mass is above all due to intensified surface melting in the summer. Iceberg calving has also increased: Greenland's glaciers are now losing a forth more ice in the form of calving events than in the comparison period (1960 to 1990). Potential causes include warmer ocean currents, which melt the glaciers' floating tongues from below; and meltwater, which percolate into cracks and crevasses until it reaches the glacier bed, where it acts like a lubricant, causing ice flows to accelerate. The total annual global sea-level rise is ca. 3.3 millimetres, of which the loss of ice on Greenland is currently contributing ca. 0.7 millimetres.
-end-


Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Related Glaciers Articles:

Saying goodbye to glaciers
Glaciers around the world are disappearing before our eyes, and the implications for people are wide-ranging and troubling, Twila Moon, a glacier expert at the University of Colorado Boulder, concludes in a Perspectives piece in the journal Science today.
Glaciers rapidly shrinking and disappearing: 50 years of glacier change in Montana
The warming climate has dramatically reduced the size of 39 glaciers in Montana since 1966, some by as much as 85 percent, according to data released by the U.S.
Polar glaciers may be home to previously undiscovered carbon cycle
Microbes in streams flowing on the surface of glaciers in the Arctic and Antarctic may represent a previously underestimated source of organic material and be part of an as yet undiscovered 'dynamic local carbon cycle,' according to a new paper published by researchers supported by the National Science Foundation.
Study shows planet's atmospheric oxygen rose through glaciers
A 'Snowball Earth' event actually took place 100 million years earlier than previously projected.
Researchers find seafloor valleys below West Antarctic glaciers
Glaciologists have uncovered large valleys in the ocean floor beneath some of the massive glaciers flowing into the Amundsen Sea in West Antarctica.
Mountain glaciers are showing some of the strongest responses to climate change
Tying an individual glacier's retreat to climate change has been controversial.
Most meltwater in Greenland fjords likely comes from icebergs, not glaciers
Icebergs contribute more meltwater to Greenland's fjords than previously thought, losing up to half of their volume as they move through the narrow inlets, according to new research.
Receding glaciers in Bolivia leave communities at risk
A new study published in The Cryosphere, an European Geosciences Union journal, has found that Bolivian glaciers shrunk by 43 percent between 1986 and 2014, and will continue to diminish if temperatures in the region continue to increase.
Technique could assess historic changes to Antarctic sea ice and glaciers
Historic changes to Antarctic sea ice could be unravelled using a new technique pioneered by scientists at Plymouth University.
Cosmopolitan snow algae accelerate the melting of Arctic glaciers
The role of red pigmented snow algae in melting Arctic glaciers has been strongly underestimated, suggests a study to be published in Nature Communications on June 22.

Related Glaciers Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".