Nav: Home

How fibrosis develops in butterfly syndrome patients

February 06, 2019

PHILADELPHIA - Children with a grave skin disorder known as butterfly syndrome develop severe and chronic blisters. Fibrosis, the thickening and scarring of connective tissues, is a major complication of the disease. Not only can fibrosis lead to club-like appendages where the skin grows over the fingers or toes, but Jefferson's Andrew South, PhD, an associate Professor in the department of Dermatology and Cutaneous Biology, has shown previously that fibrosis in butterfly syndrome patients also leads to an aggressive form of skin cancer that is often fatal. Now, Dr. South and colleagues have pinpointed how fibrosis develops in butterfly syndrome patients. The discovery points to a potential treatment for the debilitating complication.

The scientists suspected a protein called thrombospondin-1 (TSP1) might be involved in fibrosis. In previous research, Dr. South and colleagues discovered skin cells from butterfly syndrome patients have more TSP1 than skin cells from healthy individuals. In the new study, the researchers show TSP1 attaches to a protein that helps to hold layers of the skin together called collagen 7 (C7) in skin cells from healthy individuals. But C7 is missing in butterfly syndrome patients.

"We show for the first time in human cells that TSP1 binds to collagen 7 when it's there," says Dr. South, who published the results online January 23rd in the Journal of Investigative Dermatology. Since children with butterfly syndrome do not have much or any collagen 7, TSP1 instead is able to attach to a different molecule called transforming growth factor-β (TGFβ). TGFβ is a well-known signaling molecule that when activated triggers a cascade of molecular signals that culminate in fibrosis.

"Our data points to that being the major driver of fibrosis in these patients," says Dr. South, who is also a researcher at the Sidney Kimmel Cancer Center - Jefferson Health.

The researchers went on to show a molecule that stops TSP1 from activating TGFβ reduces fibrosis in a tissue engineered model of the symptom. In addition to this potential therapy, the researchers are now sifting through nearly 1,500 FDA-approved molecules to look for other treatments.

"Now that we know one of the major activators of fibrosis is TSP1, we're looking to see whether it's possible to repurpose any of those drugs to treat fibrosis in butterfly syndrome patients," says Dr. South.
-end-
Article reference: Velina S Atanasova, Rebecca J Russell, Timothy G Webster, Qingqing Cao, Pooja Agarwal, Yok Zuan Lim, Suma Krishnan, Ignacia Fuentes, Christina Guttmann-Gruber, John A McGrath, Julio C Salas-Alanis, Andrzej Fertala, Andrew P South, "Thrombospondin-1 is a major activator of TGF-beta signaling in recessive dystrophic epidermolysis bullosa fibroblasts," Journal of Investigative Dermatology, doi: 10.1016/j.jid.2019.01.011, 2019.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu.

Thomas Jefferson University

Related Protein Articles:

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.
A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.
A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.
Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.
Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.
Protein injections in medicine
One day, medical compounds could be introduced into cells with the help of bacterial toxins.
Discovery of an unusual protein
Scientists from Bremen discover an unusual protein playing a significant role in the Earth's nitrogen cycle.
Protein aggregation: Protein assemblies relevant not only for neurodegenerative disease
Amyloid fibrils play a crucial role in neurodegenerative illnesses. Scientists from Heinrich Heine University Düsseldorf (HHU) and Forschungszentrum Jülich have now been able to use cryo-electron microscopy (cryo-EM) to decode the spatial structure of the fibrils that are formed from PI3K SH3 domains - an important model system for research.
Old protein, new tricks: UMD connects a protein to antibody immunity for the first time
How can a protein be a major contributor in the development of birth defects, and also hold the potential to provide symptom relief from autoimmune diseases like lupus?
Infection-fighting protein also senses protein misfolding in non-infected cells
Researchers at the University of Toronto have uncovered an immune mechanism by which host cells combat bacterial infection, and at the same time found that a protein crucial to that process can sense and respond to misfolded proteins in all mammalian cells.
More Protein News and Protein Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.