Nav: Home

How fibrosis develops in butterfly syndrome patients

February 06, 2019

PHILADELPHIA - Children with a grave skin disorder known as butterfly syndrome develop severe and chronic blisters. Fibrosis, the thickening and scarring of connective tissues, is a major complication of the disease. Not only can fibrosis lead to club-like appendages where the skin grows over the fingers or toes, but Jefferson's Andrew South, PhD, an associate Professor in the department of Dermatology and Cutaneous Biology, has shown previously that fibrosis in butterfly syndrome patients also leads to an aggressive form of skin cancer that is often fatal. Now, Dr. South and colleagues have pinpointed how fibrosis develops in butterfly syndrome patients. The discovery points to a potential treatment for the debilitating complication.

The scientists suspected a protein called thrombospondin-1 (TSP1) might be involved in fibrosis. In previous research, Dr. South and colleagues discovered skin cells from butterfly syndrome patients have more TSP1 than skin cells from healthy individuals. In the new study, the researchers show TSP1 attaches to a protein that helps to hold layers of the skin together called collagen 7 (C7) in skin cells from healthy individuals. But C7 is missing in butterfly syndrome patients.

"We show for the first time in human cells that TSP1 binds to collagen 7 when it's there," says Dr. South, who published the results online January 23rd in the Journal of Investigative Dermatology. Since children with butterfly syndrome do not have much or any collagen 7, TSP1 instead is able to attach to a different molecule called transforming growth factor-β (TGFβ). TGFβ is a well-known signaling molecule that when activated triggers a cascade of molecular signals that culminate in fibrosis.

"Our data points to that being the major driver of fibrosis in these patients," says Dr. South, who is also a researcher at the Sidney Kimmel Cancer Center - Jefferson Health.

The researchers went on to show a molecule that stops TSP1 from activating TGFβ reduces fibrosis in a tissue engineered model of the symptom. In addition to this potential therapy, the researchers are now sifting through nearly 1,500 FDA-approved molecules to look for other treatments.

"Now that we know one of the major activators of fibrosis is TSP1, we're looking to see whether it's possible to repurpose any of those drugs to treat fibrosis in butterfly syndrome patients," says Dr. South.
-end-
Article reference: Velina S Atanasova, Rebecca J Russell, Timothy G Webster, Qingqing Cao, Pooja Agarwal, Yok Zuan Lim, Suma Krishnan, Ignacia Fuentes, Christina Guttmann-Gruber, John A McGrath, Julio C Salas-Alanis, Andrzej Fertala, Andrew P South, "Thrombospondin-1 is a major activator of TGF-beta signaling in recessive dystrophic epidermolysis bullosa fibroblasts," Journal of Investigative Dermatology, doi: 10.1016/j.jid.2019.01.011, 2019.

Media Contact: Edyta Zielinska, 215-955-7359, edyta.zielinska@jefferson.edu.

Thomas Jefferson University

Related Protein Articles:

Hi-res view of protein complex shows how it breaks up protein tangles
A new, high-resolution view of the structure of Hsp104 (heat shock protein 104), a natural yeast protein nanomachine with six subunits, may show news ways to dismantle harmful protein clumps in disease.
Breaking the protein-DNA bond
A new Northwestern University study finds that unbound proteins in a cell break up protein-DNA bonds as they compete for the single-binding site.
FASEB Science Research Conference: Protein Kinases and Protein Phosphorylation
This conference focuses on the biology of protein kinases and phosphorylation signaling.
Largest resource of human protein-protein interactions can help interpret genomic data
An international research team has developed the largest database of protein-to-protein interaction networks, a resource that can illuminate how numerous disease-associated genes contribute to disease development and progression.
STAT2: Much more than an antiviral protein
A protein known for guarding against viral infections leads a double life, new research shows, and can interfere with cell growth and the defense against parasites.
A protein makes the difference
It is well-established knowledge that blood vessels foster the growth of tumors.
Nuclear protein causes neuroblastoma to become more aggressive
Aggressive forms of neuroblastoma contain a specific protein in their cells' nuclei that is not found in the nuclei of more benign forms of the cancer, and the discovery, made through research from the University of Rochester Medical Center, could lead to new forms of targeted therapy.
How a protein could become the next big sweetener
High-fructose corn syrup and sugar are on the outs with calorie-wary consumers.
High animal protein intake associated with higher, plant protein with lower mortality rate
The largest study to examine the effects of different sources of dietary protein found that a high intake of proteins from animal sources -- particularly processed and unprocessed red meats -- was associated with a higher mortality rate, while a high intake of protein from plant sources was associated with a lower risk of death.
Protein in, ammonia out
A recent study has compiled and analyzed data from 25 previous studies.

Related Protein Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...