Nav: Home

Electron-gun simulations explain the mechanisms of high-energy cosmic rays

February 06, 2019

A new study published in EPJ D provides a rudimentary model for simulating cosmic rays' collisions with planets by looking at the model of electrons detached from a negative ion using photons. In this work, Chinese physicists have for the first time demonstrated that they can control the dynamics of negative ion detachment via photons, or photodetachment, on a moving surface.

When cosmic rays collide with planets or debris, they lose energy. Scientists use the collision of electrons with a moving surface to simulate this process. A new study published in EPJ D provides a rudimentary model for simulating cosmic rays' collisions with planets by looking at the model of electrons detached from a negative ion by photons. In this work, Chinese physicists have for the first time demonstrated that they can control the dynamics of negative ion detachment via photons, or photodetachment, on a moving surface. De-hua Wang from Ludong University, Yantai, China, and colleagues have developed mathematical equations and computer simulations showing that the chance of such photodetachment occurring depends on the electron's energy and the speed of the moving surface. For this purpose, negative ions, such as chloride (Cl-) or hydrogen (H-) ions, are considered a good source of electrons, as they are made up of one electron loosely bound by a short-ranged energy potential to the neutral atom. Such ions can be made into electron guns under a strong electric field capable of scraping electrons away--thus helping to model electrically charged cosmic rays.

These electron guns generate interference patterns. Indeed, this is triggered by the detached electron wave returning back to the ion's nucleus due to the effect of the external fields interfering with the new electron wave. As the speed of the moving surface reaches a certain threshold, its effect on the chances of photodetachment taking place becomes significant.

The authors also found that the moving surface's effect on the photodetachment of Chloride (Cl-) ions is less pronounced compared to hydrogen (H-) ions.
-end-
Reference

D. Wang, X. Sun and T. Shi (2019) Photodetachment dynamics of negative ions near a moving surface, European Physical Journal D 73: 15, DOI: 10.1140/epjd/e2018-90415-1

Springer

Related Planets Articles:

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.
How many Earth-like planets are around sun-like stars?
A new study provides the most accurate estimate of the frequency that planets that are similar to Earth in size and in distance from their host star occur around stars similar to our Sun.
Dead planets can 'broadcast' for up to a billion years
Astronomers are planning to hunt for cores of exoplanets around white dwarf stars by 'tuning in' to the radio waves that they emit.
The sun follows the rhythm of the planets
One of the big questions in solar physics is why the sun's activity follows a regular cycle of 11 years.
Five planets revealed after 20 years of observation
To confirm the presence of a planet, it is necessary to wait until it has made one or more revolutions around its star.
Icy giant planets in the laboratory
Giant planets like Neptune may contain much less free hydrogen than previously assumed.
New NASA mission could find more than 1,000 planets
A NASA telescope that will give humans the largest, deepest, clearest picture of the universe since the Hubble Space Telescope could find as many as 1,400 new planets outside Earth's solar system, new research suggests.
Giant planets around young star raise questions about how planets form
Researchers have identified a young star with four Jupiter and Saturn-sized planets in orbit around it, the first time that so many massive planets have been detected in such a young system.
The stuff that planets are made of
UZH researchers have analyzed the composition and structure of faraway exoplanets using statistical tools.
More Planets News and Planets Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab