Nav: Home

Bubbles of brand new stars

February 06, 2019

This region of the Large Magellanic Cloud (LMC) glows in striking colours in this image captured by the Multi Unit Spectroscopic Explorer (MUSE) instrument on ESO's Very Large Telescope (VLT). The region, known as LHA 120-N 180B -- N180 B for short -- is a type of nebula known as an H II region (pronounced "H two"), and is a fertile source of new stars.

The LMC is a satellite galaxy of the Milky Way, visible mainly from the Southern Hemisphere. At only around 160 000 light-years away from the Earth, it is practically on our doorstep. As well as being close to home, the LMC's single spiral arm appears nearly face-on, allowing us to inspect regions such as N180 B with ease.

H II regions are interstellar clouds of ionised hydrogen -- the bare nuclei of hydrogen atoms. These regions are stellar nurseries -- and the newly formed massive stars are responsible for the ionisation of the surrounding gas, which makes for a spectacular sight. N180 B's distinctive shape is made up of a gargantuan bubble of ionised hydrogen surrounded by four smaller bubbles.

Deep within this glowing cloud, MUSE has spotted a jet emitted by a fledgling star -- a massive young stellar object with a mass 12 times greater than our Sun. The jet -- named Herbig-Haro 1177, or HH 1177 for short -- is shown in detail in this accompanying image. This is the first time such a jet has been observed in visible light outside the Milky Way, as they are usually obscured by their dusty surroundings. However, the relatively dust-free environment of the LMC allows HH 1177 to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed.

HH 1177 tells us about the early lives of stars. The beam is highly collimated; it barely spreads out as it travels. Jets like this are associated with the accretion discs of their star, and can shed light on how fledgling stars gather matter. Astronomers have found that both high- and low-mass stars launch collimated jets like HH 1177 via similar mechanisms -- hinting that massive stars can form in the same way as their low-mass counterparts.

MUSE has recently been vastly improved by the addition of the Adaptive Optics Facility, the Wide Field Mode of which saw first light in 2017. Adaptive optics is the process by which ESO's telescopes compensate for the blurring effects of the atmosphere -- turning twinkling stars into sharp, high-resolution images. Since obtaining these data, the addition of the Narrow Field Mode, has given MUSE vision nearly as sharp as that of the NASA/ESA Hubble Space Telescope -- giving it the potential to explore the Universe in greater detail than ever before.
More information

This research was presented in a paper entitled "An optical parsec-scale jet from a massive young star in the Large Magellanic Cloud" which appeared in the journal Nature.

The research team was composed of A. F. McLeod (who conducted this research while at the University of Canterbury, New Zealand and is now affiliated with the Department of Astronomy, University of California, Berkeley, and the Department of Physics and Astronomy, Texas Tech University, USA), M. Reiter (Department of Astronomy, University of Michigan, Ann Arbor, USA), R. Kuiper (Institute of Astronomy and Astrophysics, University of Tübingen, Germany), P. D. Klaassen (UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK) and C. J, Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky"


* Link to the research paper -

* More information on MUSE -

* More information on the VLT -


Anna McLeod
Postdoctoral Research Fellow -- Texas Tech University & University of California Berkeley
Tel: +1 80 6834 2588

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670


Related Massive Stars Articles:

Cloning thousands of genes for massive protein libraries
Discovering the function of a gene requires cloning a DNA sequence and expressing it.
ALMA hears birth cry of a massive baby star
An international research team led by a Japanese astronomer has determined how the enigmatic gas flow from a massive baby star is launched.
RIT scientists measure black hole's tilt and spin for clues to how massive stars die
RIT scientists working with the LIGO Scientific Collaboration measured and interpreted the spin and alignment of a newly formed black hole detected on Jan.
Astronomers identify purest, most massive brown dwarf
An international team of astronomers has identified a record breaking brown dwarf (a star too small for nuclear fusion) with the 'purest' composition and the highest mass yet known.
Bristol and BT collaborate on massive MIMO trials for 5G wireless
The quest for highly efficient 5G wireless connectivity has been given a boost thanks to a collaboration between a team of 5G engineers from the Universities of Bristol and Lund, National Instruments (NI), and BT, one of the world's leading providers of communications services.
A new species of gecko with massive scales and tear-away skin
Many lizards can drop their tails when grabbed, but one group of geckos has gone to particularly extreme lengths to escape predation.
The birth of massive stars is accompanied by strong luminosity bursts
'How do massive stars form?' is one of the fundamental questions in modern astrophysics, because these massive stars govern the energy budget of their host galaxies.
Massive MIMO, massive win for Bristol student at NI Engineering Impact Awards
A postgraduate student from the University of Bristol is the joint recipient of five separate awards in recognition of their world record achievement in 5G wireless spectrum efficiency using Massive MIMO.
Measuring the Milky Way: 1 massive problem, 1 new solution
It is a galactic challenge, to be sure, but Gwendolyn Eadie is getting closer to an accurate answer to a question that has defined her early career in astrophysics: what is the mass of the Milky Way?
Dark matter satellites trigger massive birth of stars
Laura Sales, an assistant professor at the University of California, Riverside's Department of Physics and Astronomy, collaborated with Tjitske Starkenburg and Amina Helmi, both of the Kapteyn Astronomical Institute in The Netherlands, to present a novel analysis of computer simulations, based on theoretical models, that study the interaction of a dwarf galaxy with a dark satellite.

Related Massive Stars Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...