Nav: Home

Bubbles of brand new stars

February 06, 2019

This region of the Large Magellanic Cloud (LMC) glows in striking colours in this image captured by the Multi Unit Spectroscopic Explorer (MUSE) instrument on ESO's Very Large Telescope (VLT). The region, known as LHA 120-N 180B -- N180 B for short -- is a type of nebula known as an H II region (pronounced "H two"), and is a fertile source of new stars.

The LMC is a satellite galaxy of the Milky Way, visible mainly from the Southern Hemisphere. At only around 160 000 light-years away from the Earth, it is practically on our doorstep. As well as being close to home, the LMC's single spiral arm appears nearly face-on, allowing us to inspect regions such as N180 B with ease.

H II regions are interstellar clouds of ionised hydrogen -- the bare nuclei of hydrogen atoms. These regions are stellar nurseries -- and the newly formed massive stars are responsible for the ionisation of the surrounding gas, which makes for a spectacular sight. N180 B's distinctive shape is made up of a gargantuan bubble of ionised hydrogen surrounded by four smaller bubbles.

Deep within this glowing cloud, MUSE has spotted a jet emitted by a fledgling star -- a massive young stellar object with a mass 12 times greater than our Sun. The jet -- named Herbig-Haro 1177, or HH 1177 for short -- is shown in detail in this accompanying image. This is the first time such a jet has been observed in visible light outside the Milky Way, as they are usually obscured by their dusty surroundings. However, the relatively dust-free environment of the LMC allows HH 1177 to be observed at visible wavelengths. At nearly 33 light-years in length, it is one of the longest such jets ever observed.

HH 1177 tells us about the early lives of stars. The beam is highly collimated; it barely spreads out as it travels. Jets like this are associated with the accretion discs of their star, and can shed light on how fledgling stars gather matter. Astronomers have found that both high- and low-mass stars launch collimated jets like HH 1177 via similar mechanisms -- hinting that massive stars can form in the same way as their low-mass counterparts.

MUSE has recently been vastly improved by the addition of the Adaptive Optics Facility, the Wide Field Mode of which saw first light in 2017. Adaptive optics is the process by which ESO's telescopes compensate for the blurring effects of the atmosphere -- turning twinkling stars into sharp, high-resolution images. Since obtaining these data, the addition of the Narrow Field Mode, has given MUSE vision nearly as sharp as that of the NASA/ESA Hubble Space Telescope -- giving it the potential to explore the Universe in greater detail than ever before.
-end-
More information

This research was presented in a paper entitled "An optical parsec-scale jet from a massive young star in the Large Magellanic Cloud" which appeared in the journal Nature.

The research team was composed of A. F. McLeod (who conducted this research while at the University of Canterbury, New Zealand and is now affiliated with the Department of Astronomy, University of California, Berkeley, and the Department of Physics and Astronomy, Texas Tech University, USA), M. Reiter (Department of Astronomy, University of Michigan, Ann Arbor, USA), R. Kuiper (Institute of Astronomy and Astrophysics, University of Tübingen, Germany), P. D. Klaassen (UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK) and C. J, Evans (UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become "the world's biggest eye on the sky"

Links

* Link to the research paper - https://www.nature.com/articles/nature25189

* More information on MUSE - https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/muse/

* More information on the VLT - https://www.eso.org/public/teles-instr/paranal-observatory/vlt/

Contacts

Anna McLeod
Postdoctoral Research Fellow -- Texas Tech University & University of California Berkeley
Tel: +1 80 6834 2588
Email: anna.mcleod@ttu.edu

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
Email: pio@eso.org

ESO

Related Massive Stars Articles:

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.
Most massive neutron star ever detected, almost too massive to exist
Astronomers using the GBT have discovered the most massive neutron star to date, a rapidly spinning pulsar approximately 4,600 light-years from Earth.
Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.
Best of both worlds: Asteroids and massive mergers
University of Arizona researchers are using the Catalina Sky Survey's near-Earth object telescopes to locate the optical counterparts to gravitational waves triggered by massive mergers.
Massive stars grow same way as light stars, just bigger
Astronomers obtained the first detailed face-on view of a gaseous disk feeding the growth of a massive baby star.
What drives Yellowstone's massive elk migrations?
Yellowstone's migratory elk rely primarily on environmental cues, including a retreating snowline and the greening grasses of spring, to decide when to make the treks between their winter ranges and summer ranges, shows a new study led by University of California, Berkeley, researchers.
Stars exploding as supernovae lose their mass to companion stars during their lives
Stars over eight times more massive than the sun end their lives in supernovae explosions.
Massive collision in the planetary system Kepler 107
Two of the planets which are orbiting the star Kepler 107 could be the result of an impact similar to that which affected the Earth to produce the moon.
Observations of a rare hypernova complete the picture of the death of the massive stars
The end of a star's life can occur in a tranquil manner in the case of low mass stars.
DF-PGT, now possible through massive sequencing techniques
Researchers at the UAB, in collaboration with the Blood and Tissue Bank of Catalonia, have implemented an innovative and universal strategy, prepared for a simultaneous diagnosis of genetic mutations and chromosomal alterations within embryos obtained by in vitro fertilisation (IVF).
More Massive Stars News and Massive Stars Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab