Endocannabinoid system, a target to improve cognitive disorders in models of Down syndrome

February 06, 2019

A study by the Neuropharmacology Laboratory-NeuroPhar of the Department of Experimental and Health Sciences (DCEXS) at UPF reveals the involvement of the endocannabinoid system in cognitive disorders in mouse models of Down syndrome. The work, led by Andrés Ozaita and Rafael Maldonado, which has been published in the journal Neurobiology of Disease, also identifies cannabinoid receptor type-1 (CB1) as a potential treatment target.

Down syndrome is the most common genetic cause of mental disability. It is caused by the total or partial trisomy of chromosome 21 and affects one in every 700-1000 live births.

"The endocannabinoid system is involved in many functions, including learning and memory processes. However, until now the role of the system in the cognitive deficits of Down syndrome had not been explored", explains Alba Navarro-Romero, first author of the paper.

The researchers studied two rodent models that mimic the genetic alterations observed in individuals with Down syndrome. "In these models, we have found that CB1 receptor has a higher expression and is also more active in a brain area with a key role in memory as is the hippocampus", Andrés Ozaita explains.

Their results show that the increased expression of the CB1 receptor would be associated with the memory problems encountered by these mice such as, for example, to recall objects they have previously explored.

In fact, the inhibition of CB1 receptors both via genetic blockade techniques and via pharmacological approaches, improved the memory problems observed in model mice of Down syndrome for both sexes. This combination of beneficial effects reaffirms the role of CB1 receptors as a potential target for exploring.

"In addition, we noted that the pharmacological approaches normalized both the synaptic plasticity that is altered in models of Down syndrome and cell proliferation processes in areas of the brain responsible for creating new neurons", Anna Vazquez-Oliver points out.

"Our data show the CB1 receptor as a new target that could improve cognitive abilities in individuals with Down syndrome. Although this is our working hypothesis, our study is the first step of many others that will be needed to confirm this hypothesis", Andrés Ozaita concludes.
-end-
The work is part of the doctoral thesis of Alba Navarro-Romero (fellow on the Ministry of Education, Culture and Sport's University Personnel Training programme) and forms the basis of the doctoral thesis by Anna Vázquez-Oliver (fellow on the Jérôme Lejeune Foundation programme).

The study also involved scientists from the Pablo de Olavide University, the Hospital del Mar Medical Research Institute (IMIM), the Center for Genomic Regulation (CRG), the Autonomous University of Barcelona (UAB), and the INSERM.

Universitat Pompeu Fabra - Barcelona

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.