A hidden route for fatty acids can make cancers resistant to therapy

February 06, 2019

Fatty acid metabolism is an essential process in tumor growth and proliferation. Despite different attempts to block fatty acid metabolism as a therapeutic strategy to reduce tumor size and growth, the outcome was not always positive. Researchers from the lab of Prof. Sarah-Maria Fendt at the VIB-KU Leuven Center for Cancer Biology now demonstrate that certain tumor cells use an alternative - previously unexplored - pathway to produce fatty acids. This finding can explain the resistance of particular cancer types to fatty acid metabolism inhibition. It is essential to gain more insights in this process to develop novel therapeutic strategies. The results are published in the renowned journal Nature.

Tumors grow and proliferate, and to do so cancer cells require the duplication of building block molecules. This includes nucleotides to make DNA, but also fatty acids to make the cell boundaries i.e. the cell membrane. Not surprisingly, many cancer cells have upregulated metabolic reactions that lead to increased nucleotide and fatty acid production. Current developed therapies focus on the inhibition of nucleotide and fatty acid generation to block tumor growth. This strategy has proven to be successful in the case of nucleotide metabolism: chemotherapeutic agents currently used in cancer treatment such as 5FU and methotrexate inhibit tumor growth by targeting nucleotide generation. Surprisingly however, this effort had limited success for fatty acid metabolism inhibition.

Kim Vriens, Stefan Christen and colleagues in the lab of Sarah-Maria Fendt (VIB-KU Leuven) addressed the question why many cancer cells are resistant to the inhibition of fatty acid metabolism, and particular to the inhibition of the enzyme stearoyl-CoA desaturase (SCD). This enzyme has always been considered to be the only source of newly produced mono-unsaturated fatty acids, which are required for membrane generation. However, the researchers now found that some cancer cells exploit a unusual metabolic pathway to produce mono-unsaturated fatty acids. This pathway - novel in cancer cells - requires the enzyme fatty acid desaturase (FADS2) and results in the production of the unusual fatty acid sapienate. The presence of this novel and alternative metabolic pathway was identified in isolated cancer cells and in lung and liver tumors samples from mice and human patients.

Prof. Sarah-Maria Fendt (VIB-KU Leuven Center for Cancer Biology): "The newly discovered sapienate metabolism constitutes an alternative route for cancer cells to process the fatty acids required for membrane synthesis. These findings can explain the resistance of many cancer types to the inhibition of fatty acid desaturation. Since fatty acids are essential for tumor growth we expect that further dissection of the sapienate metabolism pathway will lead to a better understanding of how cancer cells grow and will thus open new avenues to better target this deadly disease. Moreover, this exciting discovery was supported by a fruitful collaboration between basic scientists and clinicians across three continents."
-end-
Publication

Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity, Vriens et al., Nature 2019

VIB (the Flanders Institute for Biotechnology)

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.